A generalized LDPC decoder for blind turbo equalization

The equations for iteratively decoding low-density parity-check (LDPC) codes are generalized to compute joint probabilities of arbitrary sets of codeword bits and parity checks. The standard iterative LDPC decoder, which computes single variable probabilities, is realized as a special case. Another specialization allows pairwise joint posterior probabilities of pairs of codeword bits to be computed. These pairwise joint probabilities are used in an expectation-maximization (EM) based blind channel estimator that is ignorant of the code constraints. Channel estimates are input to a turbo equalizer that exploits the structure of the LDPC code. Feeding pairwise posterior probabilities back to the channel estimator eliminates the need to average across time for channel estimation. Therefore, this scheme can be used to equalize very long codewords, even when the channel is time varying. This blind turbo equalizer is evaluated through computer simulations and found to perform as well as a channel-informed turbo equalizer but with approximately twice the number of turbo iterations.

[1]  Sylvie Perreau,et al.  Reduced computation blind equalization for FIR channel input Markov models , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[2]  Bahram Honary,et al.  Improved blind turbo detector , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[3]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[4]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[5]  John R. Barry,et al.  Blind iterative channel identification and equalization , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[6]  Georgios B. Giannakis,et al.  Trends in channel estimation and equalization , 2001 .

[7]  M. Tsatsanis,et al.  Stochastic maximum likelihood methods for semi-blind channel estimation , 1998, IEEE Signal Processing Letters.

[8]  John R. Barry,et al.  Exploiting error-control coding in blind channel estimation , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[9]  John D. Villasenor,et al.  Combined turbo detection and decoding for unknown ISI channels , 2003, IEEE Trans. Commun..

[10]  Chrysostomos L. Nikias,et al.  An ML/MMSE estimation approach to blind equalization , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[12]  L. Tong,et al.  Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.

[13]  John B. Moore,et al.  On-line estimation of hidden Markov model parameters based on the Kullback-Leibler information measure , 1993, IEEE Trans. Signal Process..

[14]  Todd K. Moon,et al.  Introduction to Low-Density Parity-Check Codes , 2003, Fundamentals of Classical and Modern Error-Correcting Codes.

[15]  R. Koetter,et al.  Turbo equalization , 2004, IEEE Signal Processing Magazine.

[16]  Karim Abed-Meraim,et al.  Blind system identification , 1997, Proc. IEEE.

[17]  Joachim Hagenauer,et al.  A Viterbi algorithm with soft-decision outputs and its applications , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[18]  Giulio Colavolpe,et al.  Extrinsic information in iterative decoding: a unified view , 2001, IEEE Trans. Commun..

[19]  Ghassan Kawas Kaleh,et al.  Joint parameter estimation and symbol detection for linear or nonlinear unknown channels , 1994, IEEE Trans. Commun..

[20]  S. ten Brink,et al.  Iterative demapping and decoding for multilevel modulation , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[21]  Zhi Ding,et al.  Blind Equalization and Identification , 2001 .

[22]  Georgios B. Giannakis,et al.  Signal processing advances in wireless and mobile communications , 2000, IEEE Signal Process. Mag..

[23]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[24]  José A. R. Fonollosa,et al.  Blind channel estimation and data detection using hidden Markov models , 1997, IEEE Trans. Signal Process..

[25]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.