On the use of aggregation operations in information fusion processes

This position paper discusses the role of the existing body of fuzzy set aggregation operations in various kinds of problems where the process of fusion of items coming from several sources is central. Several kinds of membership functions can be useful according to the nature of the information to be merged: numerical vs. ordinal inputs, preferences vs. uncertain data, observations vs. constraints. In each case, some aggregation operations look more plausible or feasible than others. The aim of this discussion is to suggest directions for putting at work the results of recent mathematical investigations in the structure of aggregation operations.

[1]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[2]  Didier Dubois,et al.  Refining aggregation operations in finite ordinal scales , 2001, EUSFLAT Conf..

[3]  K. S. Fu,et al.  AN AXIOMATIC APPROACH TO RATIONAL DECISION MAKING IN A FUZZY ENVIRONMENT , 1975 .

[4]  Richard C. T. Lee,et al.  Some Properties of Fuzzy Logic , 1971, Inf. Control..

[5]  Bernard De Baets,et al.  The functional equations of Frank and Alsina for uninorms and nullnorms , 2001, Fuzzy Sets Syst..

[6]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[7]  Phan Hong Giang,et al.  A Comparison of Axiomatic Approaches to Qualitative Decision Making Using Possibility Theory , 2001, UAI.

[8]  Didier Dubois,et al.  Implicative and conjunctive fuzzy rules - A tool for reasoning from knowledge and examples , 1999, AAAI/IAAI.

[9]  A. Sen,et al.  Chapter 22 Social choice theory , 1986 .

[10]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[11]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[12]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[13]  Joachim Weisbrod,et al.  A new approach to fuzzy reasoning , 1998, Soft Comput..

[14]  Didier Dubois,et al.  Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty , 1996, Applied Intelligence.

[15]  Peter Z. Revesz,et al.  On the Semantics of Arbitration , 1997, Int. J. Algebra Comput..

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[18]  János C. Fodor,et al.  Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..

[19]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[20]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[21]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[22]  J. Kacprzyk,et al.  Aggregation and Fusion of Imperfect Information , 2001 .

[23]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[24]  Frédéric Cuppens,et al.  Merging regulations: Analysis of a practical example , 2001, Int. J. Intell. Syst..

[25]  Hélène Fargier,et al.  Qualitative Decision under Uncertainty: Back to Expected Utility , 2003, IJCAI.

[26]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[27]  Sébastien Konieczny,et al.  Distance Based Merging: A General Framework and some Complexity Results , 2002, KR.

[28]  Didier Dubois,et al.  Merging Fuzzy Information , 1999 .

[29]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[30]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[31]  T. Pavlidis,et al.  Fuzzy sets and their applications to cognitive and decision processes , 1977 .

[32]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[33]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[34]  Michel Grabisch,et al.  Relating decision under uncertainty and multicriteria decision making models , 2000, Int. J. Intell. Syst..

[35]  Didier Dubois,et al.  Consonant approximations of belief functions , 1990, Int. J. Approx. Reason..

[36]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[37]  James C. Bezdek,et al.  Quantifying Different Facets of Fuzzy Uncertainty , 2000 .

[38]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[39]  Didier Dubois,et al.  Bipolar Representation and Fusion of Preferences on the Possibilistic Logic framework , 2002, KR.

[40]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[41]  Isabelle Bloch,et al.  Fusion of Image Information under Imprecision and Uncertainty: Numerical Methods , 2001, Data Fusion and Perception.

[42]  Didier Dubois,et al.  The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[43]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[44]  J. Goguen L-fuzzy sets , 1967 .

[45]  D. Dubois,et al.  Possibility theory in information fusion , 2000, Proceedings of the Third International Conference on Information Fusion.

[46]  Rudolf Kruse,et al.  Data Fusion and Perception , 2001, International Centre for Mechanical Sciences.

[47]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[48]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[49]  Didier Dubois,et al.  "Not Impossible" vs. "Guaranteed Possible" in Fusion and Revision , 2001, ECSQARU.

[50]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[52]  D. Dubois,et al.  Aggregation of decomposable measures with application to utility theory , 1996 .

[53]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[54]  Michel Grabisch,et al.  On symmetric pseudo-additions and pseudo-multiplications: is it possible to build rings on [-1,+1]? , 2002 .

[55]  W. Silvert Symmetric Summation: A Class of Operations on Fuzzy Sets , 1979 .

[56]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[57]  Didier Dubois,et al.  Possibilistic Merging and Distance-Based Fusion of Propositional Information , 2002, Annals of Mathematics and Artificial Intelligence.

[58]  A. Sen,et al.  Social Choice Theory , 1980 .

[59]  Marco Schaerf,et al.  Arbitration (or How to Merge Knowledge Bases) , 1998, IEEE Trans. Knowl. Data Eng..

[60]  A Hunter,et al.  Special Issue on Data and Knowledge Fusion , 2001 .

[61]  David Lindley,et al.  Statistical Decision Functions , 1951, Nature.

[62]  I. Bloch,et al.  Fusion of Information under Imprecision and Uncertainty, Numerical Methods, and Image Information Fusion , 2002 .

[63]  D. Dubois,et al.  Possibility theory and data fusion in poorly informed environments , 1994 .

[64]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[65]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[66]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[67]  Rudolf Kruse,et al.  Parallel Combination of Information Sources , 1998 .

[68]  H. Prade,et al.  Possibilistic logic , 1994 .

[69]  Didier Dubois,et al.  Knowledge-Driven versus Data-Driven Logics , 2000, J. Log. Lang. Inf..

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Didier Dubois,et al.  From Semantic to Syntactic Approaches to Information Combination in Possibilistic Logic , 1998 .

[72]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[73]  Philippe Vincke,et al.  Multicriteria Decision-aid , 1993 .

[74]  Jon Doyle,et al.  Background to Qualitative Decision Theory , 1999, AI Mag..

[75]  Didier Dubois,et al.  On the Limitations of Ordinal Approaches to Decision-making , 2002, KR.

[76]  Michel Grabisch,et al.  The symmetric Sugeno integral , 2003, Fuzzy Sets Syst..

[77]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .