Parallel reduction to Hessenberg form with Algorithm-Based Fault Tolerance
暂无分享,去创建一个
George Bosilca | Jack J. Dongarra | Piotr Luszczek | Yulu Jia | J. Dongarra | P. Luszczek | G. Bosilca | Yulu Jia
[1] Thomas Hérault,et al. Algorithm-based fault tolerance for dense matrix factorizations , 2012, PPoPP '12.
[2] A. J. Laub,et al. Hypercube implementation of some parallel algorithms in control , 1988 .
[3] Michael W. Berry,et al. Understanding search engines: mathematical modeling and text retrieval (software , 1999 .
[4] Mihail M. Konstantinov,et al. Computational methods for linear control systems , 1991 .
[5] Charng-da Lu,et al. Scalable Diskless Checkpointing for Large Parallel Systems , 2005 .
[6] Henri Casanova,et al. Using group replication for resilience on exascale systems , 2014, Int. J. High Perform. Comput. Appl..
[7] Bianca Schroeder,et al. Understanding failures in petascale computers , 2007 .
[8] Henri Casanova,et al. Combining Process Replication and Checkpointing for Resilience on Exascale Systems , 2012 .
[9] Jack Dongarra,et al. Scalable techniques for fault tolerant high performance computing , 2006 .
[10] B. Anderson,et al. Linear Optimal Control , 1971 .
[11] John Shalf,et al. The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..
[12] Thomas Hérault,et al. Unified model for assessing checkpointing protocols at extreme‐scale , 2014, Concurr. Comput. Pract. Exp..
[13] Jack Dongarra,et al. Fault tolerant matrix operations using checksum and reverse computation , 1996, Proceedings of 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers '96).
[14] R. C. Whaley,et al. Reducing Floating Point Error in Dot Product Using the Superblock Family of Algorithms , 2008, SIAM J. Sci. Comput..
[15] Daniel Kressner,et al. Algorithm 953 , 2015 .
[16] Christian H. Bischof,et al. The WY representation for products of householder matrices , 1985, PPSC.
[17] Daniel Kressner,et al. On Aggressive Early Deflation in Parallel Variants of the QR Algorithm , 2010, PARA.
[18] George Bosilca,et al. Recovery Patterns for Iterative Methods in a Parallel Unstable Environment , 2007, SIAM J. Sci. Comput..
[19] Daniel Kressner,et al. A Novel Parallel QR Algorithm for Hybrid Distributed Memory HPC Systems , 2010, SIAM J. Sci. Comput..
[20] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[21] Amy Nicole Langville,et al. Google's PageRank and beyond - the science of search engine rankings , 2006 .
[22] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..
[23] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[24] Rui Wang,et al. A Case Study of Designing Efficient Algorithm-based Fault Tolerant Application for Exascale Parallelism , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.
[25] Alan J. Laub,et al. A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .
[26] Jacob A. Abraham,et al. Algorithm-Based Fault Tolerance for Matrix Operations , 1984, IEEE Transactions on Computers.
[27] Karen S. Braman,et al. The Multishift QR Algorithm. Part II: Aggressive Early Deflation , 2001, SIAM J. Matrix Anal. Appl..
[28] I. Rosen,et al. A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations , 1995 .
[29] Hui Liu,et al. High performance linpack benchmark: a fault tolerant implementation without checkpointing , 2011, ICS '11.
[30] Sergey Brin,et al. The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.
[31] Thomas Hérault,et al. Extending the scope of the Checkpoint‐on‐Failure protocol for forward recovery in standard MPI , 2013, Concurr. Comput. Pract. Exp..
[32] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[33] Gene H. Golub,et al. Matrix computations , 1983 .
[34] Karen S. Braman,et al. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance , 2001, SIAM J. Matrix Anal. Appl..
[35] George Bosilca,et al. Algorithm-based fault tolerance applied to high performance computing , 2009, J. Parallel Distributed Comput..
[36] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[37] Franck Cappello,et al. Distributed Diskless Checkpoint for Large Scale Systems , 2010, 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing.
[38] Kurt Bryan,et al. The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..
[39] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[40] Gene H. Golub,et al. Floating Point Fault Tolerance with Backward Error Assertions , 1995, IEEE Trans. Computers.
[41] BryanKurt,et al. The $25,000,000,000 Eigenvector , 2006 .
[42] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[43] Thomas Hérault,et al. A Checkpoint-on-Failure Protocol for Algorithm-Based Recovery in Standard MPI , 2012, Euro-Par.
[44] Kai Li,et al. Diskless Checkpointing , 1998, IEEE Trans. Parallel Distributed Syst..
[45] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[46] Jack J. Dongarra,et al. The LINPACK Benchmark: past, present and future , 2003, Concurr. Comput. Pract. Exp..
[47] Zizhong Chen,et al. Algorithmic Cholesky factorization fault recovery , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).
[48] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[49] Robert A. van de Geijn,et al. Reduction to condensed form for the eigenvalue problem on distributed memory architectures , 1992, Parallel Comput..
[50] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[51] DongarraJack,et al. Algorithm-based fault tolerance for dense matrix factorizations , 2012 .
[52] Anita L. Feller. Understanding Search Engines , 2012 .
[53] Franklin T. Luk,et al. Fault-Tolerant Matrix Triangularizations on Systolic Arrays , 1988, IEEE Trans. Computers.