Effects of elevated temperatures on properties of hybrid alkaline-belite cement with high level of fly ash

[1]  Shaolin Zhang,et al.  An efficient approach for sustainable fly ash geopolymer by coupled activation of wet-milling mechanical force and calcium hydroxide , 2022, Journal of Cleaner Production.

[2]  Yunning Zhang,et al.  Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag , 2022, Construction and Building Materials.

[3]  M. Torres‐Carrasco,et al.  Hybrid cements: Towards their use as alternative and durable materials against wear , 2021, Construction and Building Materials.

[4]  Xingyang He,et al.  Eco-friendly UHPC prepared from high volume wet-grinded ultrafine GGBS slurry , 2021, Construction and Building Materials.

[5]  Hao Wang,et al.  Study of acidic degradation of alkali-activated materials using synthetic C-(N)-A-S-H and N-A-S-H gels , 2021, Composites Part B: Engineering.

[6]  Hao Wang,et al.  Hydration mechanisms and durability of hybrid alkaline cements (HACs): A review , 2021 .

[7]  Á. Palomo,et al.  Microstructural characterisation of hybrid cement after exposure to high temperatures , 2020, Construction and Building Materials.

[8]  A. Ababneh,et al.  Synthesis of kaolin-based alkali-activated cement: carbon footprint, cost and energy assessment , 2020 .

[9]  M. Fechtelkord,et al.  Water in Alkali Aluminosilicate Glasses , 2020, Frontiers in Materials.

[10]  N. Banthia,et al.  Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM , 2020 .

[11]  Xingyang He,et al.  Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials , 2020 .

[12]  B. Qu,et al.  Effect of high temperatures on the mechanical behaviour of hybrid cement , 2020 .

[13]  Paulo J.M. Monteiro,et al.  Hybrid binders: A journey from the past to a sustainable future (opus caementicium futurum) , 2019, Cement and Concrete Research.

[14]  P. Chindaprasirt,et al.  Investigation of compressive strength and microstructures of activated cement free binder from fly ash - calcium carbide residue mixture , 2019, Journal of Materials Research and Technology.

[15]  A. Fernández-Jiménez,et al.  Studies About the Hydration of Hybrid “Alkaline-Belite” Cement , 2019, Front. Mater..

[16]  Ángel Palomo,et al.  Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals , 2018, Journal of the American Ceramic Society.

[17]  Zhong Tao,et al.  Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature , 2018 .

[18]  J. McCloy,et al.  Understanding the structural origin of crystalline phase transformations in nepheline (NaAlSiO4)‐based glass‐ceramics , 2017 .

[19]  Haeng-Ki Lee,et al.  Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures , 2016 .

[20]  Ángel Palomo,et al.  Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature , 2016 .

[21]  O. Büyüköztürk,et al.  Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing , 2016 .

[22]  B. Lothenbach,et al.  Chemical activation of hybrid binders based on siliceous fly ash and Portland cement , 2016 .

[23]  Á. Palomo,et al.  Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers) , 2015 .

[24]  J. Deventer,et al.  Stoichiometrically controlled C–(A)–S–H/N–A–S–H gel blends via alkali-activation of synthetic precursors , 2015 .

[25]  John L. Provis,et al.  Microstructure and durability of alkali-activated materials as key parameters for standardization , 2015 .

[26]  W. Rickard,et al.  Thermally Induced Microstructural Changes in Fly Ash Geopolymers: Experimental Results and Proposed Model , 2015 .

[27]  Hiroyuki Sato,et al.  Characterization and storage of radioactive zeolite waste , 2014 .

[28]  P. Rovnaník,et al.  Characterization of alkali activated slag paste after exposure to high temperatures , 2013 .

[29]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[30]  Dominique Massiot,et al.  Elucidation of the Al/Si ordering in Gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy / quantum chemical calculations , 2012 .

[31]  J. Sanjayan,et al.  Factors influencing softening temperature and hot-strength of geopolymers , 2012 .

[32]  P. Basheer,et al.  Chemical and Mechanical Stability of Sodium Sulfate Activated Slag after Exposure to Elevated Temperature , 2012 .

[33]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[34]  Ángel Palomo,et al.  High-Temperature Resistance in Alkali-Activated Cement , 2010 .

[35]  Jay G. Sanjayan,et al.  Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures , 2010 .

[36]  F. Kapteijn,et al.  Thermostability of hydroxy sodalite in view of membrane applications , 2010 .

[37]  A. Fernández-Jiménez,et al.  New Cementitious Materials Based on Alkali-Activated Fly Ash: Performance at High Temperatures , 2008 .

[38]  Robert Černý,et al.  Thermal Properties of Alkali-activated Slag Subjected to High Temperatures , 2007 .

[39]  K. Ikeda,et al.  Synthesis and thermal behavior of different aluminosilicate gels , 2006 .

[40]  T. Bakharev,et al.  Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing , 2006 .

[41]  Á. G. Torre,et al.  Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity , 2006 .

[42]  Ángel Palomo,et al.  Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products , 2005 .

[43]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[44]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[45]  C. Real,et al.  Phase transformation on heating of an aged cement paste , 2004, 2401.14002.

[46]  Á. Palomo,et al.  Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products , 2004 .

[47]  C. Alonso,et al.  Dehydration and rehydration processes of cement paste exposed to high temperature environments , 2004 .

[48]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[49]  M. Hansen,et al.  29Si chemical shift anisotropies in calcium silicates from high-field 29Si MAS NMR spectroscopy. , 2003, Inorganic chemistry.

[50]  H. J. Jakobsen,et al.  Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated portland cements: a high-field 27Al and 29Si MAS NMR investigation. , 2003, Inorganic chemistry.

[51]  Vanderley Moacyr John,et al.  Pore size distribution of hydrated cement pastes modified with polymers , 2001 .

[52]  H. Panepucci,et al.  29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes , 2001 .

[53]  C. Grey,et al.  In support of a depolymerization model for water in sodium aluminosilicate glasses:: Information from NMR spectroscopy , 2000 .

[54]  G. Hollman,et al.  The synthesis of zeolites from fly ash and the properties of the zeolite products , 1998 .

[55]  J. Stebbins,et al.  NMR evidence for excess non-bridging oxygen in an aluminosilicate glass , 1997, Nature.

[56]  I. Richardson,et al.  The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends , 1997 .

[57]  J. Coey,et al.  Characterization of Mg-rich maghemite from tuffite , 1995 .

[58]  Gabriel A. Khoury,et al.  Compressive strength of concrete at high temperatures: a reassessment , 1992 .

[59]  R. Kirkpatrick,et al.  Investigation of short-range Al,Si order in synthetic anorthite by 29 Si MAS NMR spectroscopy , 1992 .

[60]  J. Stebbins Aluminium avoidance avoided , 1987, Nature.

[61]  A. Pines,et al.  Defects and short-range order in nepheline group minerals: a silicon-29 nuclear magnetic resonance study , 1986, Physics and Chemistry of Minerals.

[62]  J. Piasta,et al.  Heat deformations of cement paste phases and the microstructure of cement paste , 1984 .

[63]  É. Lippmaa,et al.  Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy , 1981 .

[64]  Ravil Z. Rakhimov,et al.  Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials – a review , 2019, Journal of Materials Research and Technology.

[65]  S. Bernal,et al.  Structural evolution of an alkali sulfate activated slag cement , 2016 .

[66]  S. Donatello,et al.  High temperature resistance of a very high volume fly ash cement paste , 2014 .

[67]  J. Sanjayan,et al.  Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures , 2007 .

[68]  R. J. Ktmpernlcr High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates , 2007 .

[69]  L. Kopecký,et al.  Geopolymer materials based on fly ash , 2005 .

[70]  Susan L. Brantley,et al.  NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal , 2003 .