Die wundervolle Welt aktiver Vielteilchensysteme: Autos, Fußgänger, Vögel oder andere „motorisierte”︁ Teilchen lassen sich durch relativ einfache Verallgemeinerungen der Newtonschen Gleichungen beschreiben

Warum werden Autofahrer oft von „Staus aus dem Nichts” zum Anhalten gezwungen, obwohl jeder schnell vorankommen mochte? Wieso entstehen die meisten Staus, bevor die Strasenkapazitat erreicht ist? Konnen Geschwindigkeitsbegrenzungen den Verkehr beschleunigen? Weshalb organisieren sich entgegengesetzt laufende Fusganger in Bahnen? Wieso produzieren Fusganger in Paniksituationen gefahrliche Blockadezustande? Wie organisieren sich Vogelschwarme, und was haben sie mit Spin-Systemen gemeinsam? Gibt es Gemeinsamkeiten zwischen der Dynamik von Verkehr und Aktienmarkten? Das alles sind Probleme, die man dank neuer Einsichten in die Dynamik von aktiven Vielteilchensystemen besser verstehen kann.

[1]  Kerner,et al.  Structure and parameters of clusters in traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[3]  Tu,et al.  Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together. , 1995, Physical review letters.

[4]  G S Karczmar,et al.  Granular Convection Observed by Magnetic Resonance Imaging , 1995, Science.

[5]  T. Vicsek,et al.  Collective motion of organisms in three dimensions , 1999, physics/9902021.

[6]  Kerner,et al.  Experimental properties of complexity in traffic flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  A. Barabasi,et al.  Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension , 1997, cond-mat/9712154.

[8]  D. Helbing,et al.  Phase diagram of tra c states in the presence of inhomogeneities , 1998, cond-mat/9809324.

[9]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[10]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[11]  Dirk Helbing,et al.  Coherent moving states in highway traffic , 1998, Nature.

[12]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[13]  Kerner,et al.  Experimental features and characteristics of traffic jams. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  D. Helbing,et al.  LETTER TO THE EDITOR: Macroscopic simulation of widely scattered synchronized traffic states , 1999, cond-mat/9901119.

[15]  Nakayama,et al.  Dynamical model of traffic congestion and numerical simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  B. Kerner EXPERIMENTAL FEATURES OF SELF-ORGANIZATION IN TRAFFIC FLOW , 1998 .

[17]  Werner Ebeling,et al.  Complex Motion of Brownian Particles with Energy Depots , 1998 .

[18]  Y. Sugiyama,et al.  Phenomenological Study of Dynamical Model of Traffic Flow , 1995 .

[19]  A. A. Verveen,et al.  1/f noise with a low frequency white noise limit , 1974, Nature.

[20]  Vicsek,et al.  Freezing by heating in a driven mesoscopic system , 1999, Physical review letters.

[21]  Albano Self-Organized Collective Displacements of Self-Driven Individuals. , 1996, Physical review letters.