Amplitude- and duration-sensitivity of single-on and double-on neurons to CF-FM stimuli in inferior colliculus of Pratt’s roundleaf bat (Hipposideros pratti)

[1]  Andres Y. Agudelo-Toro,et al.  Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus , 2015, PloS one.

[2]  B. Li,et al.  Sexual dimorphism in echolocation pulse parameters of the CF-FM bat, Hipposideros pratti , 2015, Zoological Studies.

[3]  K. Peng,et al.  Post-spike hyperpolarization participates in the formation of auditory behavior-related response patterns of inferior collicular neurons in Hipposideros pratti , 2015, Neuroscience.

[4]  P. Jen,et al.  The role of the FM component in shaping the number of impulses and response latency of inferior collicular neurons of Hipposideros armiger elicited by CF–FM sounds , 2014, Neuroscience Letters.

[5]  H. Peremans,et al.  The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls , 2013, Front. Physiol..

[6]  P. Jen,et al.  Local neuronal circuits that may shape the discharge patterns of inferior collicular neurons , 2013, Neuroscience Bulletin.

[7]  Annemarie Surlykke,et al.  Intensity and directionality of bat echolocation signals , 2013, Front. Physiol..

[8]  P. Jen The adaptive value of increasing pulse repetition rate during hunting by echolocating bats , 2013, Frontiers in Biology.

[9]  Paul A. Faure,et al.  Evolution of high duty cycle echolocation in bats , 2012, Journal of Experimental Biology.

[10]  P. Jen,et al.  Dynamic temporal signal processing in the inferior colliculus of echolocating bats , 2012, Front. Neural Circuits.

[11]  James A Simmons,et al.  Bats Use Echo Harmonic Structure to Distinguish Their Targets from Background Clutter , 2011, Science.

[12]  H. Schnitzler,et al.  Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals , 2011, Journal of Comparative Physiology A.

[13]  P. Jen,et al.  Recovery cycles of single-on and double-on neurons in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger , 2011, Brain Research.

[14]  Joshua X. Gittelman,et al.  Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: A comparison of bats with other mammals , 2011, Hearing Research.

[15]  P. Jen,et al.  Adaptive mechanisms underlying the bat biosonar behavior , 2010, Frontiers in Biology.

[16]  Hiroshi Riquimaroux,et al.  FM echolocating bats shift frequencies to avoid broadcast–echo ambiguity in clutter , 2010, Proceedings of the National Academy of Sciences.

[17]  Zi-Ying Fu,et al.  The auditory response properties of single-on and double-on responders in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger , 2010, Brain Research.

[18]  P. Jen,et al.  Echo amplitude selectivity of the bat is better for expected than for unexpected echo duration , 2009, Neuroreport.

[19]  Hiroshi Riquimaroux,et al.  On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude , 2008, Journal of Comparative Physiology A.

[20]  N. Ulanovsky,et al.  What the bat's voice tells the bat's brain , 2008, Proceedings of the National Academy of Sciences.

[21]  Joshua X. Gittelman,et al.  Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus , 2008, Neuroscience.

[22]  P. Jen,et al.  The recovery cycle of bat duration-selective collicular neurons varies with hunting phase , 2008, Neuroreport.

[23]  J. Borst,et al.  Membrane properties and firing patterns of inferior colliculus neurons: an in vivo patch-clamp study in rodents. , 2007, Journal of neurophysiology.

[24]  Gareth Jones,et al.  The evolution of echolocation in bats. , 2006, Trends in ecology & evolution.

[25]  Ellen Covey,et al.  Duration selectivity of neurons in the inferior colliculus of the big brown bat: tolerance to changes in sound level. , 2005, Journal of neurophysiology.

[26]  B. Hu,et al.  Burst firing induces a slow after hyperpolarization in rat auditory thalamus , 2005, Neuroscience Letters.

[27]  H. Schnitzler,et al.  From spatial orientation to food acquisition in echolocating bats , 2003 .

[28]  G. Neuweiler Evolutionary aspects of bat echolocation , 2003, Journal of Comparative Physiology A.

[29]  K. A. Davis Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. , 2002, Journal of neurophysiology.

[30]  P. Jen,et al.  The effect of sound intensity on duration-tuning characteristics of bat inferior collicular neurons , 2001, Journal of Comparative Physiology A.

[31]  C. Moss,et al.  Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. , 2000, The Journal of the Acoustical Society of America.

[32]  D. Weinreich,et al.  Ca2+-induced Ca2+ release mediates a slow post-spike hyperpolarization in rabbit vagal afferent neurons. , 1998, Journal of neurophysiology.

[33]  S Kuwada,et al.  Intracellular Recordings in Response to Monaural and Binaural Stimulation of Neurons in the Inferior Colliculus of the Cat , 1997, The Journal of Neuroscience.

[34]  Gerald Langner,et al.  Laminar fine structure of frequency organization in auditory midbrain , 1997, Nature.

[35]  P. Torterolo,et al.  In vivo intracellular characteristics of inferior colliculus neurons in guinea pigs , 1997, Brain Research.

[36]  J. Kauer,et al.  Whole-Cell Patch-Clamp Recording Reveals Subthreshold Sound-Evoked Postsynaptic Currents in the Inferior Colliculus of Awake Bats , 1996, The Journal of Neuroscience.

[37]  C. Faingold,et al.  Stimulation or blockade of the dorsal nucleus of the lateral lemniscus alters binaural and tonic inhibition in contralateral inferior colliculus neurons , 1993, Hearing Research.

[38]  D J Hartley,et al.  Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. , 1992, The Journal of the Acoustical Society of America.

[39]  N. Suga,et al.  Are the initial frequency-modulated components of the mustached bat's biosonar pulses important for ranging? , 1991, Journal of neurophysiology.

[40]  N Suga,et al.  Biosonar and neural computation in bats. , 1990, Scientific American.

[41]  H. Schnitzler,et al.  Information in sonar echoes of fluttering insects available for echolocating bats , 1990 .

[42]  G. Neuweiler,et al.  Foraging ecology and audition in echolocating bats. , 1989, Trends in ecology & evolution.

[43]  O. W. Henson,et al.  Echo intensity compensation by echolocating bats , 1985, Hearing Research.

[44]  J. Winer,et al.  Topology of the central nucleus of the mustache bat's inferior colliculus: Correlation of single unit properties and neuronal architecture , 1985, The Journal of comparative neurology.

[45]  G. Neuweiler Foraging, echolocation and audition in bats , 1984, Naturwissenschaften.

[46]  P. Jen,et al.  Analysis of orientation signals emitted by the CF-FM bat,Pteronotus p. parnellii and the FM bat,Eptesicus fuscus during avoidance of moving and stationary obstacles , 1982, Journal of comparative physiology.

[47]  N. Suga,et al.  Encoding of target range and its representation in the auditory cortex of the mustached bat , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Simmons,et al.  Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation , 1980, Journal of comparative physiology.

[49]  J A Simmons,et al.  Perception of echo phase information in bat sonar. , 1979, Science.

[50]  J. Simmons,et al.  Echolocation and pursuit of prey by bats. , 1979, Science.

[51]  N. Suga,et al.  Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. , 1978, Science.

[52]  J. Simmons,et al.  Echolocation: discrimination of targets by the bat, Eptesicus fuscus. , 1971, The Journal of experimental zoology.

[53]  A. Novick,et al.  ECHOLOCATION OF FLYING INSECTS BY THE BAT, CHILONYCTERIS PARNELLII , 1964 .

[54]  Charles R. Michael,et al.  The echolocation of flying insects by bats , 1960 .

[55]  L. Lapicque Has the muscular substance a longer chronaxie than the nervous substance? 1 , 1931, The Journal of physiology.

[56]  H. Horton The reversible loss of excitability in isolated amphibian voluntary muscle , 1930, The Journal of physiology.

[57]  D. Buchanan,et al.  The chronaxie in tetany , 1926 .

[58]  G. Schuller,et al.  Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat,Rhinolophus ferrumequinum , 2004, Journal of Comparative Physiology A.

[59]  E Covey,et al.  A neuroethological theory of the operation of the inferior colliculus. , 1996, Brain, behavior and evolution.

[60]  Hans-Ulrich Schnitzler,et al.  Performance of Airborne Animal Sonar Systems: I. Microchiroptera , 1980 .

[61]  D. Griffin,et al.  Listening in the Dark , 1958 .