Recent progress in flapping wings for micro aerial vehicle applications

Micro aerial vehicles using flapping wings are under investigation, as an alternative to fixed-wing and rotary-wing micro aerial vehicles. Such flapping-wing vehicles promise key potential advantag...

[1]  Koji Isogai,et al.  Experimental and numerical study of forward flight aerodynamics of insect flapping wing , 2009 .

[2]  Hugh A. Bruck,et al.  Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design , 2010 .

[3]  M. Triantafyllou,et al.  Hydrodynamics of Fishlike Swimming , 2000 .

[4]  Satyandra K. Gupta,et al.  A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs , 2010 .

[5]  K. S. Yeo,et al.  Scaling of Aerodynamic Forces of Three-Dimensional Flapping Wings , 2014 .

[6]  Ismet Gursul,et al.  Flow-induced vibrations of low aspect ratio rectangular membrane wings , 2011 .

[7]  Jae-Hung Han,et al.  Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization , 2015, Bioinspiration & biomimetics.

[8]  H. Oualli,et al.  Efficiency of an auto-propelled flapping airfoil , 2011 .

[9]  Carlos E. S. Cesnik,et al.  Effects of flexibility on the aerodynamic performance of flapping wings , 2011, Journal of Fluid Mechanics.

[10]  K. Mazaheri,et al.  Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight , 2011 .

[11]  T Nakata,et al.  Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle , 2011, Bioinspiration & biomimetics.

[12]  R. Wootton FUNCTIONAL MORPHOLOGY OF INSECT WINGS , 1992 .

[13]  A. Seifert,et al.  Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000 , 2009 .

[14]  Fritz-Olaf Lehmann,et al.  Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings. , 2004, Arthropod structure & development.

[15]  H. Aono,et al.  Effects of flapping wing kinematics on the aeroacoustics of hovering flight , 2019, Journal of Sound and Vibration.

[16]  Mark F. Reeder,et al.  Flexible- and Rigid-Wing Micro Air Vehicle: Lift and Drag Comparison , 2006 .

[17]  Seid H. Pourtakdoust,et al.  EVALUATION OF FLAPPING WING PROPULSION BASED ON A NEW EXPERIMENTALLY VALIDATED AEROELASTIC MODEL , 2012 .

[18]  Chang-kwon Kang,et al.  Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight , 2015, Bioinspiration & biomimetics.

[19]  P. Wilkin,et al.  Comparison of the Aerodynamic Forces on a Flying Sphingid Moth with Those Predicted by Quasi-Steady Theory , 1993, Physiological Zoology.

[20]  G C H E de Croon,et al.  Design, aerodynamics and autonomy of the DelFly , 2012, Bioinspiration & biomimetics.

[21]  John Young,et al.  Flapping Wing Aerodynamics: Progress and Challenges , 2008 .

[22]  Michael Schäfer,et al.  Experimental and numerical study on a laminar fluid-structure interaction reference test case , 2011 .

[23]  Abbas Ebrahimi,et al.  Experimental investigation of the effect of chordwise flexibility on the aerodynamics of flapping wings in hovering flight , 2010 .

[24]  H. Park,et al.  Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control , 2017, Bioinspiration & biomimetics.

[25]  R. Radespiel,et al.  Experimental and Numerical Fluid-Structure Analysis of Rigid and Flexible Flapping Airfoils , 2010 .

[26]  Katie Byl,et al.  Efficient Flight Control via Mechanical Impedance Manipulation: Energy Analyses for Hummingbird-Inspired MAVs , 2014, J. Intell. Robotic Syst..

[27]  S. Mao,et al.  Lift and power requirements of hovering insect flight , 2003 .

[28]  Adrian L. R. Thomas,et al.  FLOW VISUALIZATION AND UNSTEADY AERODYNAMICS IN THE FLIGHT OF THE HAWKMOTH, MANDUCA SEXTA , 1997 .

[29]  Majid Molki,et al.  Oscillatory motions of a prestrained compliant membrane caused by fluid–membrane interaction , 2010 .

[30]  James E. Hubbard,et al.  Inertial Measurements from Flight Data of a Flapping-Wing Ornithopter , 2009 .

[31]  James P. Hubner,et al.  Trailing-edge scalloping effect on flat-plate membrane wing performance , 2011 .

[32]  Jae-Hung Han,et al.  Ornithopter flight simulation based on flexible multi-body dynamics , 2010 .

[33]  R. Dudley,et al.  Mechanics of Forward Flight in Bumblebees: I. Kinematics and Morphology , 1990 .

[34]  Sam Heathcote,et al.  Effect of Spanwise Flexibility on Flapping Wing Propulsion , 2006 .

[35]  Mao Sun,et al.  Lateral dynamic flight stability of hovering insects: theory vs. numerical simulation , 2012 .

[36]  John Young,et al.  Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency , 2009, Science.

[37]  Gregg Abate,et al.  An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight , 2010 .

[38]  John Young,et al.  Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios , 2018, Journal of Fluids and Structures.

[39]  Wei Shyy,et al.  Flapping and flexible wings for biological and micro air vehicles , 1999 .

[40]  Wei Shyy,et al.  Scaling law and enhancement of lift generation of an insect-size hovering flexible wing , 2013, Journal of The Royal Society Interface.

[41]  H Liu,et al.  Size effects on insect hovering aerodynamics: an integrated computational study , 2009, Bioinspiration & biomimetics.

[42]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[43]  Mao Sun,et al.  Effects of wing deformation on aerodynamic forces in hovering hoverflies , 2010, Journal of Experimental Biology.

[44]  D. Reynaerts,et al.  Outperforming hummingbirds’ load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism , 2016, Biology Open.

[45]  Koki Kikuchi,et al.  Development of a small flapping robot: Motion analysis during takeoff by numerical simulation and experiment , 2008 .

[46]  Tomonari Furukawa,et al.  Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator , 2010 .

[47]  Joseph C. S. Lai,et al.  Reynolds number, thickness and camber effects on flapping airfoil propulsion , 2011 .

[48]  H Li,et al.  Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number , 2018, Royal Society Open Science.

[49]  Ismet Gursul,et al.  Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils , 2009 .

[50]  S. M. Walker,et al.  Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight , 2017, Nature.

[51]  Drew Landman,et al.  An Efficient Split-Plot Approach for Modeling Nonlinear Aerodynamic Effects , 2012 .

[52]  T. Hedrick,et al.  Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird , 2014, Journal of The Royal Society Interface.

[53]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .

[54]  Mao Sun,et al.  A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering , 2004, Journal of Experimental Biology.

[55]  Andrew M. Mountcastle,et al.  Wing flexibility enhances load-lifting capacity in bumblebees , 2013, Proceedings of the Royal Society B: Biological Sciences.

[56]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. , 1997, The Journal of experimental biology.

[57]  Xinyan Deng,et al.  Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings , 2011, Bioinspiration & biomimetics.

[58]  M. Percin,et al.  Wing Flexibility Effects in Clap-and-Fling , 2011 .

[59]  Mao Sun,et al.  Aerodynamic effects of corrugation in flapping insect wings in hovering flight , 2011, Journal of Experimental Biology.

[60]  Wei Shyy,et al.  Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring , 2008 .

[61]  J. D. Delaurier,et al.  An aerodynamic model for flapping-wing flight , 1993, The Aeronautical Journal (1968).

[62]  Hiroshi Yamakawa,et al.  Bio-inspired wing-folding mechanism of micro air vehicle (MAV) , 2017, Artificial Life and Robotics.

[63]  Toshiyuki Nakata,et al.  Effects of wing deformation on aerodynamic performance of a revolving insect wing , 2014 .

[64]  Bor-Jang Tsai,et al.  Design and aerodynamic analysis of a flapping-wing micro aerial vehicle , 2009 .

[65]  Hiroto Tanaka,et al.  Biomechanics and biomimetics in insect-inspired flight systems , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[66]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[67]  Sunil K. Agrawal,et al.  Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics , 2005 .

[68]  Patrick Zdunich,et al.  Development and Testing of the Mentor Flapping-wing Micro Air Vehicle , 2007 .

[69]  A. Seifert,et al.  Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000. , 2010, Journal of theoretical biology.

[70]  J. P. Whitney,et al.  Aeromechanics of passive rotation in flapping flight , 2010, Journal of Fluid Mechanics.

[71]  Tee Tai Lim,et al.  On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings , 2010 .

[72]  Mao Sun,et al.  Wing kinematics measurement and aerodynamics of hovering droneflies , 2008, Journal of Experimental Biology.

[73]  Christopher T. Orlowski,et al.  Dynamics, stability, and control analyses of flapping wing micro-air vehicles , 2012 .

[74]  A. R. Ennos INERTIAL AND AERODYNAMIC TORQUES ON THE WINGS OF DIPTERA IN FLIGHT , 1989 .

[75]  Hekmat Alighanbari,et al.  An investigation into the effects of unsteady parameters on the aerodynamics of a low Reynolds number pitching airfoil , 2010 .

[76]  Michael H Dickinson,et al.  The Initiation and Control of Rapid Flight Maneuvers in Fruit Flies1 , 2005, Integrative and comparative biology.

[77]  Sam Heathcote,et al.  Flexible flapping airfoil propulsion at low Reynolds numbers , 2005 .

[78]  Matthias Haupt,et al.  Fluid–structure analysis of a flexible flapping airfoil at low Reynolds number flow , 2012 .

[79]  Jialei Song,et al.  Force production and asymmetric deformation of a flexible flapping wing in forward flight , 2013 .

[80]  R. O’Hara,et al.  Investigation into Reynolds number effects on a biomimetic flapping wing , 2018 .

[81]  Mao Sun,et al.  Effects of unsteady deformation of flapping wing on its aerodynamic forces , 2008 .

[82]  Sanjay Mittal,et al.  Optimal aerodynamic design of airfoils in unsteady viscous flows , 2010 .

[83]  O. Flores,et al.  Numerical simulation of the flow around a flapping-wing micro air vehicle in free flight , 2018, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.

[84]  P Wu,et al.  Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings , 2011, Bioinspiration & biomimetics.

[85]  André Preumont,et al.  Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle , 2017, Bioinspiration & biomimetics.

[86]  Caidong Wang,et al.  Design and Mechanical Analysis of Bionic Foldable Beetle Wings , 2018, Applied bionics and biomechanics.

[87]  X. L. Mou,et al.  Wing motion measurement and aerodynamics of hovering true hoverflies , 2011, Journal of Experimental Biology.

[88]  Jo-Won Chang,et al.  Aerodynamic force and vortex structures of flapping flexible hawkmoth-like wings , 2016 .

[89]  W. Shyy,et al.  Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover , 2014, Journal of The Royal Society Interface.

[90]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[91]  Ronald D. Joslin,et al.  Issues in active flow control: theory, control, simulation, and experiment , 2004 .

[92]  Hekmat Alighanbari,et al.  Flow field characteristics study of a flapping airfoil using computational fluid dynamics , 2011 .