Manipulating substances with Physarum polycephalum

Abstract The plasmodium of Physarum polycephalum is a large single cell capable for optimal spanning of food sources and avoidance of harmful stimuli. The sophisticated foraging behavior of the plasmodium can be interpreted in terms of computation. When propagating on a substrate with distributed sources of food the plasmodium simulates a general-purpose storage modification machine, approximates varieties of proximity graphs and imitates calculation of shortest path and plane tessellation. The plasmodium's behaviour is determined by the space–time distribution of attracting and repelling sources, and immediately guided by the waves of excitation traveling inside the plasmodium. Due to cytoplasmic streaming a harmless colored substance can be naturally ingested by the plasmodium and distributed inside the protoplasmic network. We show that by controlling the plasmodium's propagation over an uncolored substrate we can ‘fill’ specified areas of the substrate with the color transported by the plasmodium. We experimentally demonstrate that the plasmodium of P. polycephalum excels in adaptive transportation, mixing and transformation of colored food particles. We uncover a range of operations implementable by the plasmodium over color set, and design methods to control mixing and transportation of colors.

[1]  Andrew Adamatzky,et al.  Developing Proximity Graphs by Physarum polycephalum: Does the Plasmodium Follow the Toussaint Hierarchy? , 2009, Parallel Process. Lett..

[2]  Shuji Hashimoto,et al.  Design of a mass transport surface utilizing peristaltic motion of a self-oscillating gel. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[3]  Masahiro Shimizu,et al.  Amoeboid Locomotion Having High Fluidity by a Modular Robot , 2010, Int. J. Unconv. Comput..

[4]  P A STEWART,et al.  Protoplasmic streaming and the fine structure of slime mold plasmodfa. , 1959, Experimental cell research.

[5]  Risto Myllylä,et al.  Doppler OCT imaging of cytoplasm shuttle flow in Physarum polycephalum , 2009, Journal of biophotonics.

[6]  Andrew Adamatzky,et al.  Towards Physarum Robots: Computing and Manipulating on Water Surface , 2008, ArXiv.

[7]  T. Nakagaki,et al.  Path finding by tube morphogenesis in an amoeboid organism. , 2001, Biophysical chemistry.

[8]  Toshiyuki Nakagaki,et al.  Amoebae anticipate periodic events. , 2008, Physical review letters.

[9]  D. Sattelle,et al.  Laser light-scattering analysis of protoplasmic streaming in the slime mold Physarum polycephalum. , 1977, Biochimica et biophysica acta.

[10]  M H Weisenseel,et al.  Ionic currents traverse the slime mould physarum. , 1981, Cell biology international reports.

[11]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[12]  Klaus-Peter Zauner,et al.  Robot control with biological cells , 2007, Biosyst..

[13]  N. Hülsmann,et al.  Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum. , 1978, Cytobiologie.

[14]  W. Gawlitta,et al.  Studies on microplasmodia of Physarum polycephalum , 1980, Cell and Tissue Research.

[15]  T. Ueda,et al.  Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. , 1999, Biophysical chemistry.

[16]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[17]  Tomohiro Shirakawa,et al.  Universal Computation with Limited Resources: Belousov-zhabotinsky and Physarum Computers , 2007, Int. J. Bifurc. Chaos.

[18]  Fumio Hara,et al.  Morpho-functional Machines: The New Species , 2012, Springer Japan.

[19]  Andrew Adamatzky,et al.  Steering plasmodium with light: Dynamical programming of Physarum machine , 2009, ArXiv.

[20]  Andrew Adamatzky,et al.  Physarum machines: encapsulating reaction–diffusion to compute spanning tree , 2007, Naturwissenschaften.

[21]  T. Ueda,et al.  Contraction rhythm in the plasmodium of Physarum polycephalum: dependence of the period on the amplitude, temperature and chemical environment. , 1980, European journal of cell biology.

[22]  Andrew Adamatzky,et al.  Physarum Machine: Implementation of a Kolmogorov-Uspensky Machine on a Biological substrate , 2007, Parallel Process. Lett..

[23]  S. Hashimoto,et al.  Self-oscillating gel as novel biomimetic materials. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[24]  A. Tero,et al.  Minimum-risk path finding by an adaptive amoebal network. , 2007, Physical review letters.

[25]  Robert D. Allen,et al.  Shuttle-Streaming: Synchronization with Heat Production in Slime Mold , 1963, Science.

[26]  T. Ueda,et al.  Interaction between cell shape and contraction pattern in the Physarum plasmodium. , 2000, Biophysical chemistry.

[27]  H. Honma,et al.  Toxicity of heavy metals and insecticides on slime mold Physarum polycephalum. , 1978, The Journal of toxicological sciences.

[28]  T. Nakagaki,et al.  Smart behavior of true slime mold in a labyrinth. , 2001, Research in microbiology.