Finite metric spaces of strictly negative type

Abstract We prove that, if a finite metric space is of strictly negative type, then its transfinite diameter is uniquely realized by the infinite extender (load vector). Finite metric spaces that have this property include all spaces on two, three, or four points, all trees, and all finite subspaces of Euclidean spaces. We prove that, if the distance matrix is both hypermetric and regular, then it is of strictly negative type. We show that the strictly negative type finite subspaces of spheres are precisely those which do not contain two pairs of antipodal points. In connection with an open problem raised by Kelly, we conjecture that all finite subspaces of hyperbolic spaces are hypermetric and regular, and hence of strictly negative type.

[1]  Ronald L. Graham,et al.  On the distance matrix of a directed graph , 1977, J. Graph Theory.

[2]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[3]  R. Cottle Manifestations of the Schur complement , 1974 .

[4]  Xingping Sun,et al.  Distance matrices and ridge function interpolation , 1993 .

[5]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  G. Pólya,et al.  Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .

[8]  M. Deza,et al.  The hypermetric cone is polyhedral , 1993, Comb..

[9]  R. Graham,et al.  On isometric embeddings of graphs , 1985 .

[10]  Wei-Min Liu,et al.  The cone of distance matrices , 1991 .

[11]  J. Gower Euclidean Distance Geometry , 1982 .

[12]  K. Grove,et al.  New extremal problems for the Riemannian recognition program via Alexandrov geometry , 1995 .

[13]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[14]  Michel Deza,et al.  Extreme hypermetrics and L-polytopes , 1992 .

[15]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[16]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[17]  Michel Deza,et al.  Hypermetrics in geometry of numbers , 1993, Combinatorial Optimization.

[18]  R. Alexander,et al.  On the sum of distances betweenn points on a sphere. II , 1972 .

[19]  Patrice Assouad Sur les Inégalités Valides dans L1 , 1984, Eur. J. Comb..

[20]  István Fáry Sur la courbure totale d'une courbe gauche faisant un nœud , 1949 .

[21]  Thomas L. Hayden,et al.  Approximation by matrices positive semidefinite on a subspace , 1988 .