d-Wave Superconductivity and s-Wave Charge Density Waves: Coexistence between Order Parameters of Different Origin and Symmetry

A review of the theory describing the coexistence between d-wave superconductivity and s-wave charge-density-waves (CDWs) is presented. The CDW gapping is identified with pseudogapping observed in high-Tc oxides. According to the cuprate specificity, the analysis is carried out for the two-dimensional geometry of the Fermi surface (FS). Phase diagrams on the σ0 − α plane—here, σ0 is the ratio between the energy gaps in the parent pure CDW and superconducting states, and the quantity 2α is connected with the degree of dielectric (CDW) FS gapping—were obtained for various possible configurations of the order parameters in the momentum space. Relevant tunnel and photoemission experimental data for high-Tc oxides are compared with theoretical predictions. A brief review of the results obtained earlier for the coexistence between s-wave superconductivity and CDWs is also given.

[1]  W. Pickett,et al.  Fermi Surfaces, Fermi Liquids, and High-Temperature Superconductors , 1992, Science.

[2]  M. Li,et al.  Heat capacity of mesoscopically disordered superconductors with emphasis on MgB2 , 2002 .

[3]  K. Kitazawa,et al.  TUNNELING SPECTROSCOPY OF OXIDE SUPERCONDUCTORS , 1992 .

[4]  A. Gabovich,et al.  Model for the coexistence of d -wave superconducting and charge-density-wave order parameters in high-temperature cuprate superconductors , 2009 .

[5]  A. Gabovich,et al.  Thermodynamics of superconductors with charge and spin-density waves , 1984 .

[6]  H. Eisaki,et al.  Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8 + delta). , 2005, Physical review letters.

[7]  E. Bauer,et al.  Unconventional superconductivity in PuCoGa5 , 2005, Nature.

[8]  M. Randeria,et al.  Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase. , 2008, Physical review letters.

[9]  K. Popper Objective Knowledge: An Evolutionary Approach , 1972 .

[10]  Littlewood,et al.  Collective modes and superconductivity in an extended Hubbard model for copper oxide superconductors. , 1990, Physical review. B, Condensed matter.

[11]  Thomas J. Healy,et al.  An evolutionary approach , 1993 .

[12]  B. T. Geĭlikman,et al.  Transition temperature and energy gap for superconductors with strong coupling , 1975 .

[13]  Z. Hussain,et al.  Direct Evidence of Two Gaps in Underdoped Bi2212 , 2008 .

[14]  Electron - Phonon Superconductivity , 2001, cond-mat/0106143.

[15]  J. Chu,et al.  Pressure-induced superconducting phase in the charge-density-wave compound terbium tritelluride. , 2008, Physical review letters.

[16]  Imaging the two gaps of the high-temperature superconductor Bi 2 Sr 2 CuO 6+ x , 2007, 0705.1731.

[17]  M. Randeria,et al.  Protected nodes and the collapse of Fermi arcs in high-T{c} cuprate superconductors. , 2007, Physical review letters.

[18]  D. Scalapino,et al.  Conserving approximations for strongly fluctuating electron systems. I. Formalism and calculational approach , 1989 .

[19]  Guo‐meng Zhao Reply to Comment on ‘The pairing mechanism of high-temperature superconductivity: experimental constraints’ , 2010, 1101.2694.

[20]  A. Gabovich,et al.  Influence of impurity scattering on the critical temperature of superconductors with a partial gap in the electron spectrum , 1983 .

[21]  B. Halperin,et al.  The Excitonic State at the Semiconductor-Semimetal Transition , 1968 .

[22]  J. Wilson,et al.  Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides , 1975 .

[23]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[24]  K. Maki,et al.  Why d-wave superconductivity? , 1996 .

[25]  D. Manske Theory of Unconventional Superconductors: Cooper-Pairing Mediated by Spin Excitations , 2004 .

[26]  K. Müller,et al.  Interaction of superconductivity and magnetism in borocarbide superconductors , 2001 .

[27]  R. Friend,et al.  Periodic lattice distortions and charge density waves in one- and two-dimensional metals , 1979 .

[28]  T. Kondo,et al.  Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy , 2008, 0806.0203.

[29]  J. C. Phillips,et al.  Dopant sites and structure in high Tc layered cuprates , 1999 .

[30]  V. J. Emery,et al.  Stripe phases in high-temperature superconductors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Eisaki,et al.  Interplay of electron–lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ , 2006, Nature.

[32]  A. Gabovich,et al.  Metal oxide superconductor BaPb1–xBixO3: unusual properties and new applications , 1986 .

[33]  T. Muranaka,et al.  Spatially heterogeneous character of superconductivity in MgB2 as revealed by local probe and bulk measurements , 2005 .

[34]  P. W. Anderson,et al.  TOPICAL REVIEW: The physics behind high-temperature superconducting cuprates: the 'plain vanilla' version of RVB , 2003 .

[35]  I. Mazin Iron Superconductivity Weathers Another Storm , 2011 .

[36]  J. van Wezel,et al.  An alternative interpretation of recent ARPES measurements on TiSe2 , 2009, 0911.3575.

[37]  Periodic coherence-peak height modulations in superconductingBi2Sr2CaCu2O8+δ , 2004, cond-mat/0404452.

[38]  A. Gabovich,et al.  Enhanced paramagnetic limit of the upper critical magnetic field for superconductors with charge-density waves , 2004 .

[39]  H. Eisaki,et al.  Imaging Quasiparticle Interference in Bi 2 Sr 2 CaCu 2 O 8 , 2002 .

[40]  Enric Canadell,et al.  Hidden Fermi Surface Nesting and Charge Density Wave Instability in Low-Dimensional Metals , 1991, Science.

[41]  A. Pasupathy,et al.  Nanoscale Proximity Effect in the High-Temperature Superconductor Bi2Sr2CaCu2O8+δ Using a Scanning Tunneling Microscope , 2010 .

[42]  Bianconi,et al.  Stripe structure of the CuO2 plane in Bi2Sr2CaCu2O8+y by anomalous x-ray diffraction. , 1996, Physical review. B, Condensed matter.

[43]  Michael J. Lawler,et al.  Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.

[44]  T. Togashi,et al.  Temperature-dependent pseudogap in the oxypnictides LaFeAsO 1-x F x and LaFePO 1-x F x seen via angle-integrated photoemission , 2009 .

[45]  M. Vojta Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity , 2009, 0901.3145.

[46]  D. Winkler,et al.  Magnetic field dependence of the superconducting gap and the pseudogap in Bi2212 and HgBr2-Bi2212, studied by intrinsic tunneling spectroscopy. , 2001, Physical review letters.

[47]  A. Gabovich,et al.  Influence of inelastic quasiparticle scattering on thermodynamic and transport properties of high-Tc oxides , 1996 .

[48]  Nature of the 5f states in actinide metals , 2008, 0807.0416.

[49]  D. Jérome,et al.  One Dimensional Organic Superconductors , 2005 .

[50]  V. J. Emery,et al.  Importance of phase fluctuations in superconductors with small superfluid density , 1995, Nature.

[51]  W. L. Mcmillan,et al.  Theoretical model of superconductivity and the martensitic transformation in A 15 compounds , 1976 .

[52]  A. Gabovich,et al.  Power-law low-temperature asymptotics for spatially nonhomogeneous s-wave superconductors , 1999 .

[53]  Mark Burgin,et al.  Scientific problems and questions from a logical point of view , 1994, Synthese.

[54]  D. Scalapino The case for dx2 − y2 pairing in the cuprate superconductors , 1995 .

[55]  H. Schuster Influence of dilute nonmagnetic impurities on the peierls instability in one-dimensional conductors , 1974 .

[56]  Feng Yu-ling,et al.  Superconductivity enhanced by d-density wave: A weak-coupling theory , 2011 .

[57]  Nobuaki Miyakawa,et al.  Strong Dependence of the Superconducting Gap on Oxygen Doping from Tunneling Measurements on Bi{sub 2} Sr{sub 2} CaCu{sub 2} O{sub 8{minus}{ital {delta} }} , 1998 .

[58]  E. Fradkin,et al.  Electron Nematic Phases Proliferate , 2010, Science.

[59]  S. Chakravarty Quantum oscillations and key theoretical issues in high temperature superconductors from the perspective of density waves , 2011 .

[60]  Philip W. Anderson,et al.  The Theory of Superconductivity in the High-Tc Cuprates , 1998 .

[61]  P. Klamut Superconductivity and magnetism in the ruthenocuprates , 2008 .

[62]  T. Dahm,et al.  Charge-density-wave and superconductivity d-wave gaps in the Hubbard model for underdoped high-T-c cuprates , 1997 .

[63]  A. Yazdani Visualizing pair formation on the atomic scale and the search for the mechanism of superconductivity in high-Tc cuprates , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[64]  J. Annett Symmetry of the order parameter for high-temperature superconductivity , 1990 .

[65]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[66]  I. Prigogine,et al.  Book Review: Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1998 .

[67]  T. Kondo,et al.  Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates , 2010, 1005.5309.

[68]  A. Gabovich,et al.  Charge density waves in partially dielectrized d-pairing superconductors , 2010 .

[69]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[70]  V. Zabolotnyy (π,π) Electronic Order in Iron Arsenide Superconductors. , 2009 .

[71]  K. Machida Spin Density Wave and Superconductivity in Highly Anisotropic Materials. III. Energy Gap Structure and Non-Magnetic Impurity Effects , 1982 .

[72]  J. Orenstein,et al.  From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions , 2011, Science.

[73]  M. Lumsden,et al.  Magnetism in Fe-based superconductors , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[74]  T. Kondo,et al.  Competition between the pseudogap and superconductivity in the high-Tc copper oxides , 2009, Nature.

[75]  †. Guo-mengZhao Unambiguous evidence for extended s-wave pairing symmetry in hole-doped high-temperature superconductors , 2003 .

[76]  G. Sawatzky,et al.  Charge ordering in La1.8-xEu0.2SrxCuO4 studied by resonant soft x-ray diffraction , 2009 .

[77]  Jiang,et al.  Strong-coupling effects in d-wave superconductors. , 1993, Physical review. B, Condensed matter.

[78]  Aharon Kapitulnik,et al.  How to detect fluctuating order in the high-temperature superconductors , 2002, cond-mat/0210683.

[79]  Strongly anisotropic s-wave gaps in exotic superconductors , 2003, cond-mat/0307407.

[80]  A. Gabovich,et al.  Superconductors with charge- and spin-density waves: theory and experiment (Review) , 2000 .

[81]  M. Azuma,et al.  A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2 , 2004, Nature.

[82]  D. Inosov,et al.  An ARPES view on the high-Tc problem: Phonons vs. spin-fluctuations , 2010, 1009.4336.

[83]  Lin Zhao,et al.  Monotonic d-wave superconducting gap of the optimally doped Bi2Sr1.6La0.4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy , 2008, 0808.0806.

[84]  Concepts in High Temperature Superconductivity , 2002, cond-mat/0206217.

[85]  P. Lee From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics , 2007, 0708.2115.

[86]  G. Gu,et al.  Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ , 2008, Nature.

[88]  J. Cooper,et al.  Superconducting and normal state energy gaps in Y0.8Ca0.2Ba2Cu3O7−δ from the electronic specific heat , 1997 .

[89]  Eric Fawcett,et al.  Spin-density-wave antiferromagnetism in chromium , 1988 .

[90]  S. Uchida,et al.  Evidence for stripe correlations of spins and holes in copper oxide superconductors , 1995, Nature.

[91]  J. Schmalian,et al.  PAIRING SYMMETRY AND PAIRING STATE IN FERROPNICTIDES: THEORETICAL OVERVIEW , 2009, 0901.4790.

[92]  R. Follath,et al.  Fermi surface nesting in several transition metal dichalcogenides , 2008, 0805.4105.

[93]  G. Grüner,et al.  Density Waves In Solids , 1994 .

[94]  Bernd Rosenow,et al.  From stripe to checkerboard ordering of charge-density waves on the square lattice in the presence of quenched disorder , 2006, cond-mat/0603029.

[95]  M. Ausloos,et al.  Charge- and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities , 2002 .

[96]  C. Tsuei,et al.  Quasiparticle tunneling spectra of the high-T-c mercury cuprates: Implications of the d-wave two-dimensional van Hove scenario , 1998 .

[97]  V. Kabanov,et al.  Unconventional high-temperature superconductivity from repulsive interactions: theoretical constraints. , 2011, Physical review letters.

[98]  A. Hackl,et al.  Quasiparticle Nernst effect in stripe-ordered cuprates , 2009, 0908.1088.

[99]  I. I. Mazin,et al.  Fermi surface nesting and the origin of charge density waves in metals , 2007, 0708.1744.

[100]  Jochen Mannhart,et al.  Grain boundaries in high-Tc superconductors , 2002 .

[101]  P. Anderson BCS: THE SCIENTIFIC "LOVE OF MY LIFE" , 2010 .

[102]  J. Zittartz THEORY OF THE EXCITONIC INSULATOR IN THE PRESENCE OF NORMAL IMPURITIES , 1967 .

[103]  H. Eisaki,et al.  Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+δ , 2002, Science.

[104]  A. Gabovich,et al.  Thermodynamic properties of superconducting ceramics BaPb1-xBixO3 , 1982 .

[105]  R. Follath,et al.  Nonmonotonic pseudogap in high- T c cuprates , 2008, 0801.2546.

[106]  I. Eremin,et al.  CDW as a possible reason for the pseudogap in the normal state of high-Tc cuprates , 1997 .

[107]  J. Annett,et al.  Generalized Cooper pairing in superconductors , 2007 .

[108]  N. Momono,et al.  Scanning tunneling microscopy and spectroscopy study of 4ax4a electronic charge order and the inhomogeneous pairing gap in superconducting Bi2Sr2CaCu2O8+δ , 2006 .

[109]  D. van der Marel Superconductivity: Beware of the pseudogap , 2011, 1102.3990.

[110]  Shpigel,et al.  Upper critical magnetic field of superconductors with a dielectric gap on the Fermi-surface sections. , 1988, Physical review. B, Condensed matter.

[111]  L. Forró,et al.  Pressure induced superconductivity in pristine 1T-TiSe2. , 2009, Physical review letters.

[112]  J. Kirtley,et al.  Weak links in high critical temperature superconductors , 2005 .

[113]  Z. R. Yang,et al.  Growth and superconductivity of 2H-Ni0.02TaSe2 single crystals , 2010 .

[114]  A. Gabovich,et al.  Experimental demonstration of bulk superconductivity in the perovskite system BaPb/sub 1-x/Bi/sub x/O/sub 3/ , 1984 .

[115]  P. Anderson Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems , 2007 .

[116]  Two- and three-dimensional incommensurate modulation in optimally-dopedBi2Sr2CaCu2O8+δ , 2005, cond-mat/0507505.

[117]  M. Li,et al.  Analysis of the pseudogap-related structure in tunneling spectra of superconductingBi2Sr2CaCu2O8+δrevealed by the break-junction technique , 2007 .

[118]  S. Tewari,et al.  Quasiparticle Nernst effect in the cuprate superconductors from the d-density-wave theory of the pseudogap phase , 2009, 0910.1966.

[119]  G. Refael,et al.  Quantum oscillations from Fermi arcs , 2009, 0905.2431.

[120]  P. Anderson,et al.  Fluctuation Effects at a Peierls Transition , 1973 .

[121]  The Ground State of the Pseudogap in Cuprate Superconductors , 2006, Science.

[122]  R. A. Silverman,et al.  Methods of Quantum Field Theory in Statistical Physics , 1964 .

[123]  R. Markiewicz A survey of the Van Hove scenario for high-tc superconductivity with special emphasis on pseudogaps and striped phases , 1996, cond-mat/9611238.

[124]  J. Hoffman High-temperature superconductivity: To pair or not to pair? , 2010 .

[125]  K. Bohnen,et al.  Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. , 2011, Physical review letters.

[126]  C. C. Tsuei,et al.  Pairing symmetry in cuprate superconductors , 2000 .

[127]  K. Machida Spin Density Wave and Superconductivity in Highly Anisotropic Materials , 1981 .

[128]  A. Gabovich Partial Dielectrization Model for Oxide Superconductivity , 1992 .

[129]  A. Gabovich,et al.  Josephson tunnelling involving superconductors with charge-density waves , 1997 .

[130]  P. Wróbel Checkerboard or stripes: Hard-core bosons on the checkerboard lattice as a model of charge ordering in planar cuprates , 2006 .

[131]  D. Morr A Hidden Order in the Cuprate Superconductors: The d-Density-Wave Phase , 2003 .

[132]  M. R. Norman,et al.  The pseudogap: friend or foe of high T c ? , 2005 .

[133]  Jelena Stajic,et al.  BCS BEC crossover: From high temperature superconductors to ultracold superfluids , 2005 .

[134]  J. Lorenzana,et al.  Dynamics of Electronic Inhomogeneities in Cuprates , 2011 .

[135]  S. Hüfner,et al.  Temperature dependence of the gaps of high-temperature superconductors in the Fermi-arc region , 2008 .

[136]  Shiping Zhou,et al.  Checkerboard-pattern vortex with the long-range Coulomb interaction in underdoped high-temperature superconductors , 2008 .

[137]  M. Kulić Interplay of electron–phonon interaction and strong correlations: the possible way to high-temperature superconductivity , 2000 .

[138]  J. C. Phillips,et al.  Pseudogaps, dopants, and strong disorder in cuprate high-temperature superconductors , 2003 .

[139]  J. Kirtley,et al.  Tunneling Measurements of the Cuprate Superconductors , 2007 .

[140]  Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x , 2010, Nature.

[141]  H. Berger,et al.  Probing the exciton condensate phase in 1T-TiSe2 with photoemission , 2010 .

[142]  M. Kulić,et al.  Coexistence of superconductivity and magnetism theoretical predictions and experimental results , 1985 .

[143]  P. Molinié,et al.  LAYER COMPOUNDS. CHARGE DENSITY WAVES IN TRANSITIONS METAL COMPOUNDS.ELECTRONIC PROPERTIES OF TRANSITION METAL DICHALCOGENIDES : CONNECTION BETWEEN STRUCTURAL INSTABILITIES AND SUPERCONDUCTIVITY , 1976 .

[144]  L. Bulaevskii REVIEWS OF TOPICAL PROBLEMS: Peierls structure transition in quasi-one-dimensional crystals , 1975 .

[145]  James F. Annett,et al.  Superconductivity, superfluids, and condensates , 2004 .

[146]  K. Kudo,et al.  Coexistence of Superconductivity and Charge Density Wave in SrPt2As2 , 2010, 1010.3950.

[147]  J. Rueff,et al.  Understanding the complex phase diagram of uranium: the role of electron-phonon coupling. , 2011, Physical review letters.

[148]  D. Basov,et al.  Manifesto for a higher T c , 2011 .

[149]  T. Matsubara,et al.  Spin Density Wave and Superconductivity in Highly Anisotropic Materials. II. Detailed Study of Phase Transitions , 1981 .

[150]  P. Littlewood,et al.  Coexistence of spin density wave, d-wave singlet and staggered π-triplet superconductivity , 2008, 0804.2460.

[151]  Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor. , 2006, Physical review letters.

[152]  A. Gabovich,et al.  Charge density waves in d-wave superconductors , 2010 .

[153]  H. Fujii,et al.  FEATURES OF THE ENERGY GAP ABOVE TC IN BI2SR2CACU2O8+DELTA AS SEEN BY BREAK-JUNCTION TUNNELING , 1999 .

[154]  J. V. Wezel,et al.  Exciton-phonon interactions and superconductivity bordering charge order in TiSe2 , 2009, 0907.1836.

[155]  W. Pickett Electronic structure of the high-temperature oxide superconductors , 1989 .

[156]  N. Plakida Comment on ‘The pairing mechanism of high-temperature superconductivity: experimental constraints’ , 2011 .

[157]  S. Hayden,et al.  The Fermi surface and band folding in La2−xSrxCuO4, probed by angle-resolved photoemission , 2010 .

[158]  A. Gabovich,et al.  Paramagnetic effect of magnetic field on superconductors with charge-density waves , 2005 .

[159]  C. Pfleiderer Superconducting phases of f -electron compounds , 2009, 0905.2625.

[160]  M. Månsson,et al.  Coherent d-wave superconducting gap in underdoped La2-xSrxCuO4 by angle-resolved photoemission spectroscopy. , 2008, Physical review letters.

[161]  K. Kudo,et al.  STM/STS studies on the energy gap of Pb-substituted Bi2Sr2CuO6+δ in magnetic fields , 2010 .

[162]  R. Averitt,et al.  Superconductor with Femtosecond Optical Pulses , 2007, 0705.1724.

[163]  Y. Latyshev Evidence for d -Wave Order Parameter Symmetry in Bi-2212 from Experiments on Interlayer Tunneling , 2006 .

[164]  N. Momono,et al.  On the relations among the pseudogap, electronic charge order and Fermi-arc superconductivity in Bi2Sr2CaCu2O8+δ , 2008 .

[165]  R. Cava,et al.  Superconductivity in CuxTiSe2 , 2006, cond-mat/0606529.

[166]  R. Cava,et al.  Thermal expansion and effect of pressure on superconductivity in Cu(x)TiSe(2). , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[167]  Precise determination of the superconducting gap along the diagonal direction of Bi 2 Sr 2 CaCu 2 O 8 + y : Evidence for an extended s -wave gap symmetry , 2006, cond-mat/0610599.

[168]  H. Takagi,et al.  Nodal Quasiparticles and Antinodal Charge Ordering in Ca2-xNaxCuO2Cl2 , 2005, Science.

[169]  A. Chubukov Manifesto for a higher Tc , 2011 .

[170]  H. Eisaki,et al.  Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals , 2005 .

[171]  J. Mannhart,et al.  High-Tc bicrystal grain boundaries , 2001 .

[172]  A. Yazdani,et al.  Local Ordering in the Pseudogap State of the High-Tc Superconductor Bi2Sr2CaCu2O8+δ , 2004, Science.

[173]  Maki,et al.  d-wave superconductor as a model of high-Tc superconductors. , 1994, Physical review. B, Condensed matter.

[174]  R. Follath,et al.  Pseudogap and charge density waves in two dimensions. , 2007, Physical review letters.

[175]  R. Klemm Striking similarities between the pseudogap phenomena in cuprates and in layered organic and dichalcogenide superconductors , 2000 .

[176]  Stripe order, depinning, and fluctuations in La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ and La$_{1.875}$Ba$_{0.075}$Sr$_{0.050}$CuO$_{4}$ , 2004, cond-mat/0403396.

[177]  M. Vojta Tendencies toward nematic order in YBa2Cu3O6+δ: Uniform distortion vs. incipient charge stripes , 2010, 1007.3866.

[178]  H. Sakata,et al.  Spatial correlation between the LDOS modulation and electronic inhomogeneity in Bi2Sr2-xLaxCuO6+δ , 2009 .

[179]  A. Damascelli,et al.  Two gaps make a high-temperature superconductor? , 2007, 0706.4282.

[180]  V. J. Emery,et al.  Frustrated electronic phase separation and high-temperature superconductors , 1993 .

[181]  M. Li,et al.  Competition of Superconductivity and Charge Density Waves in Cuprates: Recent Evidence and Interpretation , 2010 .

[182]  R. Follath,et al.  Temperature-dependent Fermi surface of 2H-TaSe2 driven by competing density wave order fluctuations , 2008, 0807.3929.

[183]  F. Disalvo,et al.  Neutron scattering study of the charge-density wave transitions in 2 H − Ta Se 2 and 2 H − Nb Se 2 , 1977 .

[184]  Alexei Abrikosov,et al.  Fundamentals of the theory of metals , 1988 .

[185]  Experimental Constraints on the Pairing State of the Cuprate Superconductors: an Emerging Consensus , 1996, cond-mat/9601060.

[186]  H. Alloul,et al.  Defects in correlated metals and superconductors , 2007, 0711.0877.

[187]  D. V. Harlingen,et al.  Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors-Evidence for d x 2 -y 2 symmetry , 1995 .

[188]  A. Gabovich,et al.  Non-stationary Josephson tunneling involving superconductors with spin-density waves , 2000 .

[189]  F. Kusmartsev,et al.  Two-component physics of cuprates and superconductor–insulator transitions , 2008 .

[190]  V. Krasnov Interlayer tunneling spectroscopy of Bi 2 Sr 2 CaCu 2 O 8 + δ : A look from inside on the doping phase diagram of high- T c superconductors , 2002 .

[191]  D. Douglass MAGNETIC FIELD DEPENDENCE OF THE SUPERCONDUCTING ENERGY GAP , 1961 .

[192]  A. Bansil,et al.  Competing order scenario of two-gap behavior in hole-doped cuprates , 2007, 0711.0480.

[193]  H. Eisaki,et al.  Coincidence of Checkerboard Charge Order and Antinodal State Decoherence in Strongly Underdoped Superconducting Bi 2 Sr 2 CaCu , 2005 .

[194]  Y. Takano,et al.  Large pseudogap and nodal superconducting gap in Bi 2 Sr 2 − x La x CuO 6 + δ and Bi 2 Sr 2 CaCu 2 O 8 + δ : Scanning tunneling microscopy and spectroscopy , 2010 .

[195]  A. Alexandrov High-temperature superconductivity: the explanation , 2011, Peking University-World Scientific Advanced Physics Series.

[196]  Dragan Mihailovic,et al.  Quasiparticle dynamics and gap structure in Hg Ba 2 Ca 2 Cu 3 O 8 + δ investigated with femtosecond spectroscopy , 2001 .

[197]  C. Gadermaier,et al.  Distinct pseudogap and quasiparticle relaxation dynamics in the superconducting state of nearly optimally doped SmFeAsO0.8F0.2 single crystals. , 2009, Physical review letters.

[198]  R. Dupree,et al.  NMR Evidence for a {ital d}-Wave Normal-State Pseudogap , 1997 .

[199]  Heat capacity of mesoscopically disordered superconductors: implications for MgB2 , 2001, cond-mat/0112100.

[200]  D. R. Noakes,et al.  Spin-density-wave antiferromagnetism in chromium alloys , 1994 .

[201]  H. Takagi,et al.  An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates , 2007, Science.

[202]  Z. Hussain,et al.  Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212 , 2007, Nature.

[203]  T. Claeson,et al.  Evidence for coexistence of the superconducting gap and the pseudogap in Bi-2212 from intrinsic tunneling spectroscopy. , 2000, Physical review letters.

[204]  Wei Zhang,et al.  Triplet versus singlet superconductivity in quasi-one-dimensional conductors , 2007 .

[205]  G. Gu,et al.  Bi 2 Sr 2 CaCu 2 O 8 + δ Bicrystal c -Axis Twist Josephson Junctions: A New Phase-Sensitive Test of Order Parameter Symmetry , 1999 .

[206]  K. Held,et al.  Pseudogap of metallic layered nickelate R(2-x)Sr(x)NiO4 (R = Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[207]  Richard H. Friend,et al.  Electronic properties of intercalation complexes of the transition metal dichalcogenides , 1987 .

[208]  B. Mühlschlegel Die thermodynamischen Funktionen des Supraleiters , 1959 .

[209]  M. Li,et al.  Thermodynamics of superconductors with charge-density waves , 2003 .

[210]  R. Cava,et al.  Multiple electronic transitions and superconductivity in Pd x TiSe 2 , 2010 .

[211]  Sasagawa,et al.  D ec 2 00 8 Energy gaps in the failed highT c superconductor , 2008 .

[212]  L. Balicas,et al.  Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements , 2010, 1009.2078.

[213]  S. Brazovskii,et al.  Pseudogaps in incommensurate charge density waves and one-dimensional semiconductors , 2003 .

[214]  H. Wen,et al.  Transmission electron microscopy study of one-dimensional incommensurate structural modulation in superconducting oxides Bi2+xSr2−xCuO6+δ (0.10≤x≤0.40) , 2009 .

[215]  C. Tsuei,et al.  Pairing Symmetry in Cuprate Superconductors: Phase-Sensitive Tests , 2003 .

[216]  B. Büchner,et al.  Electrons in cuprates: A consistent ARPES view , 2010 .

[217]  †. Guo-mengZhao The magnetic resonance in high-temperature superconductors: evidence for an extended s-wave pairing symmetry , 2004 .

[218]  Distinct Fermi-Momentum-Dependent Energy Gaps in Deeply Underdoped Bi2212 , 2006, Science.

[219]  P. Erdos,et al.  Magnetism of actinide compounds , 1999 .

[220]  M. Norman,et al.  The Challenge of Unconventional Superconductivity , 2011, Science.

[221]  V. Heine,et al.  The effect of electron-electron interactions on the Peierls transition in metals with strong nesting of Fermi surfaces , 1981 .

[222]  V. Ginzburg Superconductivity: The Day Before Yesterday, Yesterday, Today, and Tomorrow , 2000 .

[223]  Z. Hussain,et al.  ARPES studies of cuprate Fermiology: superconductivity, pseudogap and quasiparticle dynamics , 2010, 1009.0274.

[224]  Nernst effect, quasiparticles, and d -density waves in cuprates , 2003, cond-mat/0312588.

[225]  D. Johrendt,et al.  Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe 2 As 2 , 2008, 0805.4021.

[226]  Z. Shen,et al.  A brief update of angle-resolved photoemission spectroscopy on a correlated electron system , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[227]  E. Schierle,et al.  Phase diagram of charge order in La1.8−xEu0.2SrxCuO4from resonant soft x-ray diffraction , 2010, 1011.5101.

[228]  M. Pękała,et al.  Temperature-dependent pseudogap-like features in tunnel spectra of high-Tc cuprates as a manifestation of charge-density waves , 2008 .

[229]  Aharon Kapitulnik,et al.  Distinguishing patterns of charge order : Stripes or checkerboards , 2006 .

[230]  R. Prozorov Superfluid density in a superconductor with an extended d-wave gap , 2008 .

[231]  Yoichi Ando,et al.  Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ , 2007, Nature.

[232]  M. Ausloos,et al.  Charge- and spin-density-wave superconductors , 2001 .

[233]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[234]  A. Gabovich,et al.  Charge-density-wave origin of the dip-hump structure in tunnel spectra of the BSCCO superconductor , 2007 .