Ensemble minimaxity of James‐Stein estimators
暂无分享,去创建一个
[1] Yuzo Maruyama,et al. A new class of generalized Bayes minimax ridge regression estimators , 2004, math/0508282.
[2] J. Berger,et al. Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .
[3] George Casella,et al. Condition Numbers and Minimax Ridge Regression Estimators , 1985 .
[4] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[5] George Casella,et al. Minimax Ridge Regression Estimation , 1980 .
[6] J. Berger. A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean , 1980 .
[7] J. Berger,et al. Generalized Bayes Estimators in Multivariate Problems , 1978 .
[8] Lawrence D. Brown,et al. Estimation with Incompletely Specified Loss Functions (the Case of Several Location Parameters) , 1975 .
[9] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[10] B. Efron,et al. Empirical Bayes on vector observations: An extension of Stein's method , 1972 .
[11] B. Efron,et al. Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case , 1972 .
[12] B. Efron,et al. Limiting the Risk of Bayes and Empirical Bayes Estimators—Part I: The Bayes Case , 1971 .
[13] L. Brown. Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .
[14] W. Strawderman. Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .
[15] L. Brown,et al. Ensemble Minimax Estimation for Multivariate Normal Means , 2011 .
[16] J. Neyman,et al. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .
[17] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[18] R. Berger. Gamma minimax robustness of bayes rules , 1979 .
[19] J. Berger. Admissible Minimax Estimation of a Multivariate Normal Mean with Arbitrary Quadratic Loss , 1976 .