Scale selection for classification of point-sampled 3D surfaces

Three-dimensional ladar data are commonly used to perform scene understanding for outdoor mobile robots, specifically in natural terrain. One effective method is to classify points using features based on local point cloud distribution into surfaces, linear structures or clutter volumes. But the local features are computed using 3D points within a support-volume. Local and global point density variations and the presence of multiple manifolds make the problem of selecting the size of this support volume, or scale, challenging. In this paper, we adopt an approach inspired by recent developments in computational geometry (Mitra et al., 2005) and investigate the problem of automatic data-driven scale selection to improve point cloud classification. The approach is validated with results using data from different sensors in various environments classified into different terrain types (vegetation, solid surface and linear structure).

[1]  David Mumford,et al.  Statistics of range images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Ruzena Bajcsy,et al.  Fish-scales: representing fuzzy manifolds , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[3]  Wijerupage Sardha Wijesoma,et al.  Pose Invariant , Robust Feature Extraction From Range Data With a Modi fi ed Scale Space Approach , 2004 .

[4]  D. Donoho,et al.  Multiscale Geometric Analysis for 3-D Catalogues , 2002 .

[5]  Gérard G. Medioni,et al.  First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Tai Sing Lee,et al.  Scaling Laws in Natural Scenes and the Inference of 3D Shape , 2005, NIPS.

[7]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[8]  Song-Chun Zhu,et al.  Information Scaling Laws in Natural Scenes , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[9]  Jean-Luc Starck,et al.  Analysis of the Galaxy Distribution using Multiscale Methods , 2002, SPIE Astronomical Telescopes + Instrumentation.

[10]  Eric Saund,et al.  Symbolic Construction of a 2-D Scale-Space Image , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Martial Hebert,et al.  Natural terrain classification using 3-d ladar data , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[12]  H. Siegfried Stiehl,et al.  A Generalized Discrete Scale-Space Formulation for 2-D and 3-D Signals , 2003, Scale-Space.

[13]  Martin David Adams,et al.  Pose invariant, robust feature extraction from data with a modified scale space approach , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[14]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[15]  John W. Fisher,et al.  Flexible histograms: a multiresolution target discrimination model , 1998, Defense, Security, and Sensing.

[16]  Stefan Gumhold,et al.  Feature Extraction From Point Clouds , 2001, IMR.

[17]  Dale Purves,et al.  Image/source statistics of surfaces in natural scenes , 2003, Network.

[18]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[20]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[21]  Shree K. Nayar,et al.  Spatial information in multiresolution histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Dirk Langer,et al.  Imaging Ladar for 3-D Surveying and CAD Modeling of Real-World Environments , 2000, Int. J. Robotics Res..

[23]  Cordelia Schmid,et al.  Matching images with different resolutions , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[24]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.