Fusion d'informations pour la compréhension de scènes

RÉSUMÉ. Cet article traite du problème de la compréhension de scènes routières pour des systèmes d’aide à la conduite. Afin de pouvoir reconnaître le grand nombre d’objets pouvant être présents dans la scène, plusieurs capteurs et algorithmes de classification doivent être utilisés. L’approche proposée est fondée sur la représentation de toutes les informations disponibles au niveau d’une image sur-segmentée. La principale nouveauté de la méthode est sa capacité à inclure de nouvelles classes d’objets ainsi que de nouveaux capteurs ou méthodes de détection. Plusieurs classes comme le sol, la végétation et le ciel sont considérées, ainsi que trois capteurs différents. L’approche est validée sur des données réelles de scènes routières en milieu urbain.

[1]  Jeffrey A. Barnett,et al.  Calculating Dempster-Shafer Plausibility , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Alexei A. Efros,et al.  Recovering Surface Layout from an Image , 2007, International Journal of Computer Vision.

[3]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[4]  Ian Reid,et al.  gSLIC: a real-time implementation of SLIC superpixel segmentation , 2011 .

[5]  Andreas Geiger,et al.  Joint 3D Estimation of Objects and Scene Layout , 2011, NIPS.

[6]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[7]  Véronique Berge-Cherfaoui,et al.  Moving Objects Detection by Conflict Analysis in Evidential Grids , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[8]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  W. F. Clocksin,et al.  Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction , 2012, International Journal of Computer Vision.

[12]  Rudolf Mester,et al.  Free Space Computation Using Stochastic Occupancy Grids and Dynamic Programming , 2008 .

[13]  Luc Van Gool,et al.  Segmentation-Based Urban Traffic Scene Understanding , 2009, BMVC.

[14]  Daniel Cremers,et al.  B-Spline Modeling of Road Surfaces With an Application to Free-Space Estimation , 2009, IEEE Transactions on Intelligent Transportation Systems.

[15]  Andreas Geiger,et al.  Automatic camera and range sensor calibration using a single shot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Bernt Schiele,et al.  A Dynamic Conditional Random Field Model for Joint Labeling of Object and Scene Classes , 2008, ECCV.

[18]  Véronique Berge-Cherfaoui,et al.  Multi-modal object detection and localization for high integrity driving assistance , 2014, Machine Vision and Applications.

[19]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[21]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[22]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..

[23]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Luc Van Gool,et al.  Dynamic 3D Scene Analysis from a Moving Vehicle , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Umar Mohammed,et al.  Scene shape priors for superpixel segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[26]  Alexei A. Efros,et al.  Closing the loop in scene interpretation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Yann LeCun,et al.  Scene parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers , 2012, ICML.

[28]  Ines Ernst,et al.  Mutual Information Based Semi-Global Stereo Matching on the GPU , 2008, ISVC.

[29]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[30]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[31]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..