Response Surface Optimization of an Ammonia–Water Combined Power/Cooling Cycle Based on Exergetic Analysis

[1]  Ricardo Vasquez Padilla,et al.  Exergy analysis of a combined power and cooling cycle , 2013 .

[2]  Mauro Venturini,et al.  Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery , 2014 .

[3]  T. Srinivas,et al.  Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery , 2014 .

[4]  D. Y. Goswami,et al.  On Evaluating Efficiency of a Combined Power and Cooling Cycle , 2003 .

[5]  S. Anand,et al.  Simulation studies of refrigeration cycles: A review , 2013 .

[6]  Jan Fabian Feldhoff,et al.  Energetic Comparison of Linear Fresnel and Parabolic Trough Collector Systems , 2012 .

[7]  Roberto Best,et al.  Solar refrigeration and cooling , 1999 .

[8]  C. A. Infante Ferreira,et al.  Solar refrigeration options – a state-of-the-art review , 2008 .

[9]  D. Yogi Goswami,et al.  Analysis of a New Thermodynamic Cycle for Combined Power and Cooling Using Low and Mid Temperature Solar Collectors , 1999 .

[10]  Fahad A. Al-Sulaiman,et al.  Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia , 2014 .

[11]  Chul Ho Han,et al.  Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles , 2012 .

[12]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[13]  A. Hasan,et al.  First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source , 2002 .

[14]  Hongguang Jin,et al.  Thermodynamic analysis of a novel absorption power/cooling combined-cycle , 2006 .

[15]  Mehran Ameri,et al.  Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System , 2014 .

[16]  M. J. Wagner Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint , 2012 .

[17]  D. Yogi Goswami,et al.  Analysis of power and cooling cogeneration using ammonia-water mixture , 2010 .

[18]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[19]  E. Stefanakos,et al.  A REVIEW OF THERMODYNAMIC CYCLES AND WORKING FLUIDS FOR THE CONVERSION OF LOW-GRADE HEAT , 2010 .

[20]  D. Yogi Goswami,et al.  Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources , 2012 .

[21]  Alberto Coronas,et al.  An overview of combined absorption power and cooling cycles , 2013 .

[22]  D. Yogi Goswami,et al.  Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle , 2012 .

[23]  Daniele Cocco,et al.  Comparison of Medium-size Concentrating Solar Power Plants based on Parabolic Trough and Linear Fresnel Collectors , 2014 .

[24]  S. Chungpaibulpatana,et al.  A review of absorption refrigeration technologies , 2001 .

[25]  Gunnar Tamm,et al.  Theoretical and experimental investigation of an ammonia–water power and refrigeration thermodynamic cycle , 2004 .

[26]  D. Yogi Goswami,et al.  Principles of Solar Engineering , 1978 .

[27]  D. Goswami,et al.  A combined power/cooling cycle , 2000 .

[28]  A. I. Kalina,et al.  Combined-Cycle System With Novel Bottoming Cycle , 1984 .

[29]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[30]  G. Morin,et al.  Comparison of Linear Fresnel and Parabolic Trough Collector power plants , 2012 .