General Ellipse Packings in an Optimized Circle Using Embedded Lagrange Multipliers

The general ellipse packing problem is to find a non-overlapping arrangement of n ellipses with (in principle) arbitrary size and orientation parameters inside a given type of container set. Here we consider the general ellipse packing problem with respect to an optimized circle container with minimal radius. Following the review of selected topical literature, we introduce a new model formulation approach based on using embedded Lagrange multipliers. This optimization model is implemented using the computing system Mathematica: we present illustrative numerical results using the LGO global-local optimization software package linked to Mathematica. Our study demonstrates the applicability of the embedded Lagrange multipliers based modeling approach combined with global optimization tools to solve challenging ellipse packing problems.

[1]  Tibor Csendes,et al.  New Approaches to Circle Packing in a Square - With Program Codes , 2007, Optimization and its applications.

[2]  János D. Pintér,et al.  Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints , 2013, J. Glob. Optim..

[3]  Steffen Rebennack,et al.  Cutting ellipses from area-minimizing rectangles , 2014, J. Glob. Optim..

[4]  János D. Pintér,et al.  Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..

[5]  Tibor Csendes,et al.  Global Optimization in Geometry — Circle Packing into the Square , 2005 .

[6]  Bernardetta Addis,et al.  Efficiently packing unequal disks in a circle , 2008, Oper. Res. Lett..

[7]  Sh. I. Galiev,et al.  Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain , 2013 .

[8]  Giorgio Fasano,et al.  Optimized packings with applications , 2015 .

[9]  J. D. Pinter,et al.  Configuration Analysis and Design by Using Optimization Tools in Mathematica , 2006 .

[10]  János D. Pintér,et al.  Development and calibration of a currency trading strategy using global optimization , 2013, J. Glob. Optim..

[11]  Mihály Csaba Markót,et al.  Optimal Packing of 28 Equal Circles in a Unit Square – The First Reliable Solution , 2004, Numerical Algorithms.

[12]  János D. Pintér,et al.  Global Optimization Toolbox for Maple: an introduction with illustrative applications , 2006, Optim. Methods Softw..

[13]  János D. Pintér,et al.  Global optimization in action , 1995 .

[14]  Mhand Hifi,et al.  A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies , 2009, Adv. Oper. Res..

[15]  Ignacio Castillo,et al.  A spring-embedding approach for the facility layout problem , 2004, J. Oper. Res. Soc..

[16]  János D. Pintér Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results , 2001, Ann. Oper. Res..

[17]  Stephen J. Wright,et al.  Packing Ellipsoids with Overlap , 2012, SIAM Rev..

[18]  János D. Pintér,et al.  How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results , 2018, Ann. Oper. Res..

[19]  José Mario Martínez,et al.  Packing circles within ellipses , 2013, Int. Trans. Oper. Res..

[20]  János D. Pintér,et al.  LGO — A Program System for Continuous and Lipschitz Global Optimization , 1997 .

[21]  János D. Pintér,et al.  Solving circle packing problems by global optimization: Numerical results and industrial applications , 2008, Eur. J. Oper. Res..

[22]  J. Pintér Nonlinear Optimization in Modeling Environments Software Implementations for Compilers , Spreadsheets , Modeling Languages , and Integrated Computing Systems , 2005 .

[23]  P. G. SZAB Equal Circles Packing in a Square I. - Problem Setting and Bounds for Optimal Solutions , 2000 .

[24]  János D. Pintér,et al.  MathOptimizer Professional: Key Features and Illustrative Applications , 2006 .

[25]  I. Litvinchev,et al.  Packing circular-like objects in a rectangular container , 2015 .

[26]  Ignacio Castillo,et al.  A Logarithmic Barrier Approach To Solving The Dashboard Planning Problem , 2003 .

[27]  Thierry Gensane,et al.  Optimal Packings of Two Ellipses in a Square , 2014 .

[28]  János D. Pintér,et al.  Benchmarking nonlinear optimization software in technical computing environments , 2013 .

[29]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[30]  János D. Pintér,et al.  Finding elliptic Fekete points sets: two numerical solution approaches , 2001 .

[31]  Andrea Grosso,et al.  Solving the problem of packing equal and unequal circles in a circular container , 2010, J. Glob. Optim..