General Ellipse Packings in an Optimized Circle Using Embedded Lagrange Multipliers
暂无分享,去创建一个
[1] Tibor Csendes,et al. New Approaches to Circle Packing in a Square - With Program Codes , 2007, Optimization and its applications.
[2] János D. Pintér,et al. Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints , 2013, J. Glob. Optim..
[3] Steffen Rebennack,et al. Cutting ellipses from area-minimizing rectangles , 2014, J. Glob. Optim..
[4] János D. Pintér,et al. Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..
[5] Tibor Csendes,et al. Global Optimization in Geometry — Circle Packing into the Square , 2005 .
[6] Bernardetta Addis,et al. Efficiently packing unequal disks in a circle , 2008, Oper. Res. Lett..
[7] Sh. I. Galiev,et al. Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain , 2013 .
[8] Giorgio Fasano,et al. Optimized packings with applications , 2015 .
[9] J. D. Pinter,et al. Configuration Analysis and Design by Using Optimization Tools in Mathematica , 2006 .
[10] János D. Pintér,et al. Development and calibration of a currency trading strategy using global optimization , 2013, J. Glob. Optim..
[11] Mihály Csaba Markót,et al. Optimal Packing of 28 Equal Circles in a Unit Square – The First Reliable Solution , 2004, Numerical Algorithms.
[12] János D. Pintér,et al. Global Optimization Toolbox for Maple: an introduction with illustrative applications , 2006, Optim. Methods Softw..
[13] János D. Pintér,et al. Global optimization in action , 1995 .
[14] Mhand Hifi,et al. A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies , 2009, Adv. Oper. Res..
[15] Ignacio Castillo,et al. A spring-embedding approach for the facility layout problem , 2004, J. Oper. Res. Soc..
[16] János D. Pintér. Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results , 2001, Ann. Oper. Res..
[17] Stephen J. Wright,et al. Packing Ellipsoids with Overlap , 2012, SIAM Rev..
[18] János D. Pintér,et al. How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results , 2018, Ann. Oper. Res..
[19] José Mario Martínez,et al. Packing circles within ellipses , 2013, Int. Trans. Oper. Res..
[20] János D. Pintér,et al. LGO — A Program System for Continuous and Lipschitz Global Optimization , 1997 .
[21] János D. Pintér,et al. Solving circle packing problems by global optimization: Numerical results and industrial applications , 2008, Eur. J. Oper. Res..
[22] J. Pintér. Nonlinear Optimization in Modeling Environments Software Implementations for Compilers , Spreadsheets , Modeling Languages , and Integrated Computing Systems , 2005 .
[23] P. G. SZAB. Equal Circles Packing in a Square I. - Problem Setting and Bounds for Optimal Solutions , 2000 .
[24] János D. Pintér,et al. MathOptimizer Professional: Key Features and Illustrative Applications , 2006 .
[25] I. Litvinchev,et al. Packing circular-like objects in a rectangular container , 2015 .
[26] Ignacio Castillo,et al. A Logarithmic Barrier Approach To Solving The Dashboard Planning Problem , 2003 .
[27] Thierry Gensane,et al. Optimal Packings of Two Ellipses in a Square , 2014 .
[28] János D. Pintér,et al. Benchmarking nonlinear optimization software in technical computing environments , 2013 .
[29] János D. Pintér,et al. Global Optimization: Software, Test Problems, and Applications , 2002 .
[30] János D. Pintér,et al. Finding elliptic Fekete points sets: two numerical solution approaches , 2001 .
[31] Andrea Grosso,et al. Solving the problem of packing equal and unequal circles in a circular container , 2010, J. Glob. Optim..