Perception-guided global illumination solution for animation rendering

We present a method for efficient global illumination computation in dynamic environments by taking advantage of temporal coherence of lighting distribution. The method is embedded in the framework of stochastic photon tracing and density estimation techniques. A locally operating energy-based error metric is used to prevent photon processing in the temporal domain for the scene regions in which lighting distribution changes rapidly. A perception-based error metric suitable for animation is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained. Furthermore, the computation cost is reduced compared to the traditional approaches operating solely in the spatial domain.

[1]  Stefan Müller,et al.  A Radiosity Approach for the Simulation of Daylight , 1995, Rendering Techniques.

[2]  Holly E. Rushmeier,et al.  Implementation and Analysis of an Image-Based Global Illumination Framework for Animated Environments , 1996, IEEE Trans. Vis. Comput. Graph..

[3]  Wolfgang Heidrich,et al.  Interactive Display of Global Illumination Solutions for Non‐diffuse Environments – A Survey , 2001, Comput. Graph. Forum.

[4]  Donald P. Greenberg,et al.  Radiosity redistribution for dynamic environments , 1990, IEEE Computer Graphics and Applications.

[5]  Donald P. Greenberg,et al.  A perceptually based physical error metric for realistic image synthesis , 1999, SIGGRAPH.

[6]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[7]  James Arvo,et al.  A framework for realistic image synthesis , 1997, SIGGRAPH.

[8]  M. Kalos,et al.  Monte Carlo methods , 1986 .

[9]  Donald P. Greenberg,et al.  A model of visual masking for computer graphics , 1997, SIGGRAPH.

[10]  Karol Myszkowski,et al.  Using the visual differences predictor to improve performance of progressive global illumination computation , 2000, TOGS.

[11]  Frank Schöffel,et al.  Reducing Memory Requirements for Interactive Radiosity using Movement Prediction , 1999, Rendering Techniques.

[12]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[13]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[14]  Xavier Pueyo,et al.  Radiosity for dynamic environments , 1997, Comput. Animat. Virtual Worlds.

[15]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[16]  George Drettakis,et al.  Interactive update of global illumination using a line-space hierarchy , 1997, SIGGRAPH.

[17]  Gary W. Meyer,et al.  A perceptually based adaptive sampling algorithm , 1998, SIGGRAPH.

[18]  Wilfried Osberger,et al.  Perceptual vision models for picture quality assessment and compression applications , 1999 .

[19]  François X. Sillion,et al.  Space-Time Hierarchical Radiosity , 1999, Rendering Techniques.

[20]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[21]  Christine D. Piatko,et al.  Comparing Real and Synthetic Images: Some Ideas about Metrics , 1995, Rendering Techniques.

[22]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[23]  Xavier Pueyo,et al.  Radiosity for dynamic environments , 1997 .

[24]  Donald P. Greenberg,et al.  Density Estimation Techniques fro Global Illumination , 1998 .

[25]  Donald P. Greenberg A framework for realistic image synthesis , 1999, CACM.

[26]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[27]  Donald P. Greenberg,et al.  Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments , 2005, TOGS.

[28]  Bernd Girod,et al.  The Information Theoretical Significance of Spatial and Temporal Masking in Video Signals , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[29]  Shenchang Eric Chen,et al.  Incremental radiosity: an extension of progressive radiosity to an interactive image synthesis system , 1990, SIGGRAPH.

[30]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[31]  Roger J. Hubbold,et al.  Efficient Hierarchical Refinement and Clustering for Radiosity in Complex Environments , 1996, Comput. Graph. Forum.

[32]  Karol Myszkowski,et al.  Perceptually-Informed Accelerated Rendering of High Quality Walkthrough Sequences , 1999, Rendering Techniques.