Locally range‐separated hybrids as linear combinations of range‐separated local hybrids

Range-separated hybrid density functionals, which incorporate different fractions of exact exchange at different interelectronic separations, offer substantial advantages over conventional global hybrid functionals. However, they generally use a fixed, system-independent range-separation parameter, which numerical experience and formal arguments both show to be a limiting approximation. Locally range-separated hybrids, which instead use a position-dependent range-separation function, should overcome this limitation, but their implementation is nontrivial. Here, we present a method which in practice converts a locally range-separated hybrid into a linear combination of range-separated local hybrids. Thus, unlike our previous implementation of this locally range-separated hybrid idea, we do not need to approximate the exchange hole, and we can take advantage of existing self-consistent local hybrid implementations to carry out self-consistent calculations using locally range-separated hybrid functionals. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

[1]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[2]  Benjamin G. Janesko,et al.  Self-consistent generalized Kohn-Sham local hybrid functionals of screened exchange: Combining local and range-separated hybridization. , 2008, The Journal of chemical physics.

[3]  G. Scuseria,et al.  Assessment of a Middle-Range Hybrid Functional. , 2008, Journal of chemical theory and computation.

[4]  Edward N Brothers,et al.  Accurate solid-state band gaps via screened hybrid electronic structure calculations. , 2008, The Journal of chemical physics.

[5]  M. Ernzerhof,et al.  Generalized-gradient exchange-correlation hole obtained from a correlation factor ansatz. , 2008, The Journal of chemical physics.

[6]  Benjamin G. Janesko,et al.  Generalized gradient approximation model exchange holes for range-separated hybrids. , 2008, The Journal of chemical physics.

[7]  R. Baer,et al.  A density functional theory for symmetric radical cations from bonding to dissociation. , 2008, The journal of physical chemistry. A.

[8]  Benjamin G. Janesko,et al.  Parameterized local hybrid functionals from density-matrix similarity metrics. , 2008, The Journal of chemical physics.

[9]  G. Scuseria,et al.  Exact-exchange energy density in the gauge of a semilocal density functional approximation , 2007, 0710.3354.

[10]  G. Scuseria,et al.  The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. , 2007, The Journal of chemical physics.

[11]  M. Kaupp,et al.  Local hybrid functionals: an assessment for thermochemical kinetics. , 2007, The Journal of chemical physics.

[12]  Benjamin G. Janesko,et al.  Local hybrid functionals based on density matrix products. , 2007, The Journal of chemical physics.

[13]  M. Kaupp,et al.  Local hybrid exchange-correlation functionals based on the dimensionless density gradient , 2007 .

[14]  Kimihiko Hirao,et al.  Long-range corrected density functional calculations of chemical reactions: redetermination of parameter. , 2007, The Journal of chemical physics.

[15]  M. Kaupp,et al.  A thermochemically competitive local hybrid functional without gradient corrections. , 2007, The Journal of chemical physics.

[16]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[17]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[18]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[19]  Jianmin Tao,et al.  Meta-generalized gradient approximation for the exchange-correlation hole with an application to the jellium surface energy , 2006 .

[20]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[21]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[22]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[23]  Kimihiko Hirao,et al.  A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. , 2005, The Journal of chemical physics.

[24]  Muneaki Kamiya,et al.  Influence of the long-range exchange effect on dynamic polarizability , 2005 .

[25]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[26]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[27]  A. Savin,et al.  Short-range exchange and correlation energy density functionals: beyond the local-density approximation. , 2004, The Journal of chemical physics.

[28]  G. Scuseria,et al.  Progress in the development of exchange-correlation functionals , 2005 .

[29]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[30]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[31]  Gustavo E Scuseria,et al.  Assessment and validation of a screened Coulomb hybrid density functional. , 2004, The Journal of chemical physics.

[32]  D. Truhlar,et al.  Erratum: Small representative benchmarks for thermochemical calculations (J. Phys. Chem. A (2003) 107A, (8997)) , 2004 .

[33]  Donald G. Truhlar,et al.  Small Representative Benchmarks for Thermochemical Calculations , 2003 .

[34]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[35]  Gustavo E. Scuseria,et al.  Local hybrid functionals , 2003 .

[36]  Kimihiko Hirao,et al.  A density functional study of van der Waals interactions , 2002 .

[37]  A. Görling,et al.  Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules , 2001 .

[38]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[39]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[40]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[41]  John P. Perdew,et al.  Generalized gradient approximation to the angle- and system-averaged exchange hole , 1998 .

[42]  K. Burke,et al.  Unambiguous exchange-correlation energy density , 1998 .

[43]  L. D. Künne,et al.  Recent Developments and Applications of Modern Density Functional Theory , 1998 .

[44]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[45]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[46]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[47]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[48]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[49]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[50]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[51]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[52]  L. Kleinman,et al.  Good semiconductor band gaps with a modified local-density approximation. , 1990, Physical review. B, Condensed matter.

[53]  E. Gross,et al.  Density-Functional Theory , 1990 .

[54]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[55]  J. Perdew,et al.  Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. , 1985, Physical review. A, General physics.

[56]  H. Monkhorst,et al.  Hartree-Fock density of states for extended systems , 1979 .

[57]  J. D. Talman,et al.  Optimized effective atomic central potential , 1976 .

[58]  R. T. Sharp,et al.  A Variational Approach to the Unipotential Many-Electron Problem , 1953 .