Trajectory and Attitude Simulation for Mars Aerocapture and Aerobraking

A combined strategy of aerocapture and aerobraking is presented to achieve a near-circular orbit, starting from ah yperbolic trajectory, without requiring an orbital insertion burn. Aerothermodynamic force, moment, and heat flux calculations employ a Maxwellian free-molecular flow model, with Knudsen-number-based interpolations for the transition regime. The six-degree-of-freedom motion model, including quaternion-based attitude dynamics, allows stability and sensitivity analyses for the atmospheric passes. A spacecraft model with two large panels suitable for Earth aerocapture is considered. Minor orbit-correction burns at the apoapsis are provided after each pass for manipulating the periapsis for the next pass to meet the desired aerobraking corridor. It is observed that an initial orbit of eccentricity 1.6 and relative entry velocity of 12 km/s at 300-km altitude can be reduced to an orbit with an eccentricity of 0.02, using a total of six atmospheric passes, without exceeding the peak convective heat flux constraint for the spacecraft or requiring an orbit insertion burn. This result has considerable importance fo rl ow-Earth-orbit space-tug captures and Mars missions, wherein the strategy proposed will lead to significant savings in spacecraft propellant mass during the orbit insertion and, subsequently, orbit circularization.

[1]  E. M. Repic,et al.  Aerobraking as a potential planetary capture mode. , 1968 .

[2]  J. R. French,et al.  Aerobraking and aerocapture for planetary missions , 1980 .

[3]  G. Walberg A Survey of Aeroassisted Orbit Transfer , 1985 .

[4]  Angelo Miele,et al.  Optimal trajectories for the aeroassisted flight experiment , 1989 .

[5]  J. G. Gurley Guidance for an aerocapture maneuver , 1993 .

[6]  Richard W. Powell,et al.  Six-degree-of-freedom guidance and control analysis of Mars aerocapture , 1993 .

[7]  Steven W. Evans,et al.  Examination of a Practical Aerobraking Guidance Algorithm , 1995 .

[8]  Jordi Puig-Suari,et al.  Aerocapture with a Flexible Tether , 1995 .

[9]  Fayyaz A. Lohar,et al.  Optimal atmospheric trajectory for aerogravity assist with heat constraint , 1995 .

[10]  A. Miele,et al.  Robust Predictor-Corrector Guidance for Aeroassisted Orbital Transfer , 1996 .

[11]  H. Tran,et al.  Phenolic Impregnated Carbon Ablators (PICA) for Discovery class missions , 1996 .

[12]  Prasun N. Desai,et al.  Entry dispersion analysis for the Stardust comet sample return capsule , 1997 .

[13]  D. Lyons,et al.  Mars Global Surveyor: Aerobraking with a Broken Wing , 1997 .

[14]  V. Alwar,et al.  Mars Global Surveyor Aerobraking at Mars , 1998 .

[15]  P. Desai,et al.  Entry Dispersion Analysis for the Stardust Comet Sample Return Capsule , 1997 .

[16]  William Willcockson,et al.  Mars Global Surveyor: Aerobraking Mission Overview , 1999 .

[17]  R. Tolson,et al.  Autonomous Aerobraking at Mars , 2002 .

[18]  John L. Junkins,et al.  Rigid Body Kinematics , 2003 .

[19]  Mrinal Kumar,et al.  Trajectory and Attitude Simulation for Aerocapture and Aerobraking , 2004 .

[20]  Robert W. Bailey,et al.  Cost-Benefit Analysis of the Aerocapture Mission Set , 2005 .

[21]  Plume Modeling and Application to Mars 2001 Odyssey Aerobraking , 2005 .