An effect of large permanent charge: decreasing flux with increasing transmembrane potential
暂无分享,去创建一个
[1] B. Eisenberg,et al. Relative dielectric constants and selectivity ratios in open ionic channels , 2017, 1710.00090.
[2] Roderick MacKinnon,et al. Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG , 2017, Cell.
[3] B. Eisenberg,et al. Flux Ratios and Channel Structures , 2016, 1612.08742.
[4] P. Blank,et al. The hemifusion structure induced by Influenza virus haemagglutinin is determined by physical properties of the target membranes , 2016, Nature Microbiology.
[5] F. Theodoulou,et al. ABC transporter research: going strong 40 years on , 2015, Biochemical Society transactions.
[6] A. Koide,et al. Crystal structures of a double-barrelled fluoride ion channel , 2015, Nature.
[7] M. Trudeau,et al. Handbook of ion channels , 2015 .
[8] Hongguo Xu,et al. A complete analysis of a classical Poisson–Nernst–Planck model for ionic flow , 2015 .
[9] Weishi Liu,et al. Effects of (Small) Permanent Charge and Channel Geometry on Ionic Flows via Classical Poisson-Nernst-Planck Models , 2015, SIAM J. Appl. Math..
[10] Weishi Liu,et al. Poisson-Nernst-Planck Systems for Ion Flow with a Local Hard-Sphere Potential for Ion Size Effects , 2013, SIAM J. Appl. Dyn. Syst..
[11] J. Symerský,et al. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter , 2013, Proceedings of the National Academy of Sciences.
[12] X. Tu,et al. Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part II: Numerics , 2012 .
[13] B. Eisenberg. Channels as Enzymes: Oxymoron and Tautology , 2011, 1112.2363.
[14] B. Eisenberg. Crowded Charges in Ion Channels , 2010, 1009.1786.
[15] D. Vasileska,et al. Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation , 2010 .
[16] Bixiang Wang,et al. Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.
[17] R. Eisenberg. Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.
[18] G. Robillard,et al. A biological porin engineered into a molecular, nanofluidic diode. , 2007, Nano letters.
[19] Weishi Liu,et al. Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..
[20] Bob Eisenberg,et al. IONS IN FLUCTUATING CHANNELS: TRANSISTORS ALIVE , 2005, q-bio/0506016.
[21] Weishi Liu,et al. Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..
[22] K. Weylandt,et al. Channels , 1999, The Journal of physiology.
[23] B. Eisenberg,et al. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.
[24] R. S. Eisenberg,et al. Computing the Field in Proteins and Channels , 2010, 1009.2857.
[25] T. Litman,et al. Channels, Carriers, and Pumps: An Introduction to Membrane Transport , 1990 .
[26] R. S. Eisenberg,et al. Channels as enzymes , 1990, The Journal of Membrane Biology.
[27] R. Gunn,et al. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. , 1986, Biochimica et biophysica acta.
[28] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[29] A. Hodgkin,et al. The influence of calcium on sodium efflux in squid axons , 1969, The Journal of physiology.
[30] R. Keynes,et al. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle , 1959, The Journal of physiology.
[31] A. Hodgkin,et al. THE IONIC BASIS OF ELECTRICAL ACTIVITY IN NERVE AND MUSCLE , 1951 .
[32] Hans H. Ussing,et al. The Distinction by Means of Tracers Between Active Transport and Diffusion , 1949 .
[33] H. Ussing. Interpretation of Sodium the Exchange of Radio-Sodium in Isolated Muscle , 1947, Nature.
[34] Bob Eisenberg,et al. Reversal permanent charge and reversal potential: case studies via classical Poisson–Nernst–Planck models , 2014 .
[35] Shuguan Ji,et al. Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part I: Analysis , 2012 .
[36] Weishi Liu,et al. One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species , 2009 .
[37] D H Jones,et al. Atomic biology , 2005, Heredity.
[38] M. Blaustein,et al. Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.
[39] J. Ruppersberg. Ion Channels in Excitable Membranes , 1996 .
[40] Robert F. Pierret,et al. Semiconductor device fundamentals , 1996 .
[41] B. Sakmann,et al. Single-Channel Recording , 1995, Springer US.
[42] D. Tosteson. Membrane transport : people and ideas , 1989 .
[43] D. Tosteson,et al. Membrane Transport , 1989, People and Ideas.
[44] Isaak Rubinstein. Electro-diffusion of ions , 1987 .