An effect of large permanent charge: decreasing flux with increasing transmembrane potential

[1]  B. Eisenberg,et al.  Relative dielectric constants and selectivity ratios in open ionic channels , 2017, 1710.00090.

[2]  Roderick MacKinnon,et al.  Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG , 2017, Cell.

[3]  B. Eisenberg,et al.  Flux Ratios and Channel Structures , 2016, 1612.08742.

[4]  P. Blank,et al.  The hemifusion structure induced by Influenza virus haemagglutinin is determined by physical properties of the target membranes , 2016, Nature Microbiology.

[5]  F. Theodoulou,et al.  ABC transporter research: going strong 40 years on , 2015, Biochemical Society transactions.

[6]  A. Koide,et al.  Crystal structures of a double-barrelled fluoride ion channel , 2015, Nature.

[7]  M. Trudeau,et al.  Handbook of ion channels , 2015 .

[8]  Hongguo Xu,et al.  A complete analysis of a classical Poisson–Nernst–Planck model for ionic flow , 2015 .

[9]  Weishi Liu,et al.  Effects of (Small) Permanent Charge and Channel Geometry on Ionic Flows via Classical Poisson-Nernst-Planck Models , 2015, SIAM J. Appl. Math..

[10]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Flow with a Local Hard-Sphere Potential for Ion Size Effects , 2013, SIAM J. Appl. Dyn. Syst..

[11]  J. Symerský,et al.  Structures of a Na+-coupled, substrate-bound MATE multidrug transporter , 2013, Proceedings of the National Academy of Sciences.

[12]  X. Tu,et al.  Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part II: Numerics , 2012 .

[13]  B. Eisenberg Channels as Enzymes: Oxymoron and Tautology , 2011, 1112.2363.

[14]  B. Eisenberg Crowded Charges in Ion Channels , 2010, 1009.1786.

[15]  D. Vasileska,et al.  Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation , 2010 .

[16]  Bixiang Wang,et al.  Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.

[17]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[18]  G. Robillard,et al.  A biological porin engineered into a molecular, nanofluidic diode. , 2007, Nano letters.

[19]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[20]  Bob Eisenberg,et al.  IONS IN FLUCTUATING CHANNELS: TRANSISTORS ALIVE , 2005, q-bio/0506016.

[21]  Weishi Liu,et al.  Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..

[22]  K. Weylandt,et al.  Channels , 1999, The Journal of physiology.

[23]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[24]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[25]  T. Litman,et al.  Channels, Carriers, and Pumps: An Introduction to Membrane Transport , 1990 .

[26]  R. S. Eisenberg,et al.  Channels as enzymes , 1990, The Journal of Membrane Biology.

[27]  R. Gunn,et al.  Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. , 1986, Biochimica et biophysica acta.

[28]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[29]  A. Hodgkin,et al.  The influence of calcium on sodium efflux in squid axons , 1969, The Journal of physiology.

[30]  R. Keynes,et al.  The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle , 1959, The Journal of physiology.

[31]  A. Hodgkin,et al.  THE IONIC BASIS OF ELECTRICAL ACTIVITY IN NERVE AND MUSCLE , 1951 .

[32]  Hans H. Ussing,et al.  The Distinction by Means of Tracers Between Active Transport and Diffusion , 1949 .

[33]  H. Ussing Interpretation of Sodium the Exchange of Radio-Sodium in Isolated Muscle , 1947, Nature.

[34]  Bob Eisenberg,et al.  Reversal permanent charge and reversal potential: case studies via classical Poisson–Nernst–Planck models , 2014 .

[35]  Shuguan Ji,et al.  Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V Relations and Critical Potentials. Part I: Analysis , 2012 .

[36]  Weishi Liu,et al.  One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species , 2009 .

[37]  D H Jones,et al.  Atomic biology , 2005, Heredity.

[38]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[39]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[40]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[41]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[42]  D. Tosteson Membrane transport : people and ideas , 1989 .

[43]  D. Tosteson,et al.  Membrane Transport , 1989, People and Ideas.

[44]  Isaak Rubinstein Electro-diffusion of ions , 1987 .