K-kernels in K-transitive and K-quasi-transitive Digraphs

Let D be a digraph, V ( D ) and A ( D ) will denote the sets of vertices and arcs of D , respectively. A subset N of V ( D ) is k -independent if for every pair of vertices u , v ? N , we have d ( u , v ) , d ( v , u ) ? k ; it is l -absorbent if for every u ? V ( D ) - N there exists v ? N such that d ( u , v ) ? l . A ( k , l ) -kernel of D is a k -independent and l -absorbent subset of V ( D ) . A k -kernel is a ( k , k - 1 ) -kernel.A digraph D is transitive if for every path ( u , v , w ) in D we have ( u , w ) ? A ( D ) . This concept can be generalized as follows, a digraph D is quasi-transitive if for every path ( u , v , w ) in D , we have ( u , w ) ? A ( D ) or ( w , u ) ? A ( D ) . In the literature, beautiful results describing the structure of both transitive and quasi-transitive digraphs are found that can be used to prove that every transitive digraph has a k -kernel for every k ? 2 and that every quasi-transitive digraph has a k -kernel for every k ? 3 .We introduce three new families of digraphs, two of them generalizing transitive and quasi-transitive digraphs respectively; a digraph D is k -transitive if whenever ( x 0 , x 1 , ? , x k ) is a path of length k in D , then ( x 0 , x k ) ? A ( D ) ; k -quasi-transitive digraphs are analogously defined, so (quasi-)transitive digraphs are 2-(quasi-)transitive digraphs. We prove some structural results about both classes of digraphs that can be used to prove that a k -transitive digraph has an n -kernel for every n ? k ; that for even k ? 2 , every k -quasi-transitive digraph has an n -kernel for every n ? k + 2 ; that every 3-quasi-transitive digraph has k -kernel for every k ? 4 . Also, we prove that a k -transitive digraph has a k -king if and only if it has a unique initial strong component and that a k -quasi-transitive digraph has a ( k + 1 ) -king if and only if it has a unique initial strong component.

[1]  César Hernández-Cruz,et al.  3-transitive Digraphs , 2012, Discuss. Math. Graph Theory.

[2]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs , 2009, Discuss. Math. Graph Theory.

[3]  Jørgen Bang-Jensen,et al.  Kings in quasi-transitive digraphs , 1998, Discret. Math..

[4]  Miroslav Treml,et al.  3-Kings in 3-partite tournaments , 2008, Discret. Math..

[5]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[6]  K. M. Koh,et al.  Kings in multipartite tournaments , 1995, Discret. Math..

[7]  L. PASTRANA RAMÍREZ,et al.  INDEPENDENT RESTRICTED DOMINATION AND THE LINE DIGRAPH , 2011 .

[8]  Iwona Wloch,et al.  On (k, l)-kernels in D-join of digraphs , 2007, Discuss. Math. Graph Theory.

[9]  Eli Gafni,et al.  Recursion in Distributed Computing , 2010, SSS.

[10]  Hortensia Galeana-Sánchez,et al.  Kernels by monochromatic paths and the color-class digraph , 2011, Discuss. Math. Graph Theory.

[11]  Jørgen Bang-Jensen,et al.  The structure of strong arc-locally semicomplete digraphs , 2004, Discret. Math..

[12]  L. Lovász,et al.  Every directed graph has a semi-kernel , 1974 .

[13]  Hortensia Galeana-Sánchez,et al.  Cyclically k-partite digraphs and k-kernels , 2011, Discuss. Math. Graph Theory.

[14]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs , 2010, Discuss. Math. Graph Theory.

[15]  Hortensia Galeana-Sánchez,et al.  On the structure of strong 3-quasi-transitive digraphs , 2010, Discret. Math..

[16]  Jørgen Bang-Jensen,et al.  Quasi-transitive digraphs , 1995, J. Graph Theory.

[17]  Andrzej W loch,et al.  53 No . 4 2009 , 571-581 ON ( k , l )-KERNELS IN THE CORONA OF DIGRAPHS , 2010 .

[18]  H. Jacob,et al.  About quasi-kernels in a digraph , 1996, Discret. Math..

[19]  Mićo Durdević Geometry of quantum principal bundles I , 1996 .

[20]  Katta G. Murty,et al.  On KΔ , 1986, Discret. Appl. Math..

[21]  Barba Flores Luis Felipe,et al.  Shortest H-restricted paths in arc colored digraphs , 2011 .

[22]  Hortensia Galeana-Sánchez,et al.  A classification of arc-locally semicomplete digraphs , 2009, Electron. Notes Discret. Math..

[23]  Iwona Wloch,et al.  On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs , 2008, Discret. Math..

[24]  Claude Berge,et al.  A combinatorial problem in logic , 1977, Discret. Math..

[25]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: The upper bound , 2012, JACM.

[26]  Amaury Lambert,et al.  Proof(s) of the Lamperti representation of Continuous-State Branching Processes , 2008, 0802.2693.

[27]  Filomena Pacella,et al.  Alternating Sign Multibump Solutions of Nonlinear Elliptic Equations in Expanding Tubular Domains , 2012, 1210.4229.

[28]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[29]  Claude Berge,et al.  Recent problems and results about kernels in directed graphs , 1991, Discret. Math..

[30]  Filomena Pacella,et al.  Self-focusing Multibump Standing Waves in Expanding Waveguides , 2011 .

[31]  Carsten Thomassen,et al.  Kings in k-partite tournaments , 1991, Discret. Math..

[32]  Mexico On the asymptotic behaviour of increasing self-similar Markov processes , 2009 .

[33]  Hortensia Galeana-Sánchez,et al.  On the Existence of (k,l)-Kernels in Infinite Digraphs: A Survey , 2014, Discuss. Math. Graph Theory.

[34]  G. Gutin,et al.  The radii of n-partite tournaments , 1986 .

[35]  J rgen Bang-Jensen,et al.  Arc-local tournament digraphs: a generalisation of tournaments and bipartite tournaments , 1993 .

[36]  Camino Balbuena,et al.  A note on the upper bound and girth pair of (k;g)-cages , 2013, Discret. Appl. Math..

[37]  Hortensia Galeana-Sánchez,et al.  H-kernels in the D-join , 2011, Ars Comb..

[38]  Mika Olsen,et al.  Kernels by monochromatic paths in digraphs with covering number 2 , 2011, Discret. Math..

[39]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[40]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[41]  Shiying Wang,et al.  Independent sets and non-augmentable paths in arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs , 2011, Discret. Math..

[42]  Iwona Wloch,et al.  On (k, l)-kernels in generalized products , 1997, Discret. Math..

[43]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in bipartite tournaments , 2009, Discuss. Math. Graph Theory.

[44]  Hortensia Galeana-Sánchez,et al.  Tournaments with kernels by monochromatic paths , 2012, Contributions Discret. Math..

[45]  Hortensia Galeana-Sánchez A new characterization of perfect graphs , 2012, Discret. Math..

[46]  B. P. Tan,et al.  On the 3-kings and 4-kings in multipartite tournaments , 2006, Discret. Math..

[47]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments , 2008, Discuss. Math. Graph Theory.

[48]  Jos'e Luis P'erez Garmendia On Weighted Tempered Moving Averages Processes , 2008 .

[49]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic cycles in edge-coloured k-partite tournaments , 2011 .

[50]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[51]  Hortensia Galeana-Sánchez,et al.  On the existence of kernels and h-kernels in directed graphs , 1992, Discret. Math..

[52]  Gregory Gutin,et al.  Kings in semicomplete multipartite digraphs , 2000, J. Graph Theory.

[53]  Hortensia Galeana-Sánchez,et al.  K-kernels in Generalizations of Transitive Digraphs , 2011, Discuss. Math. Graph Theory.

[54]  Vladimir Gurvich,et al.  Perfect graphs, kernels, and cores of cooperative games , 2006, Discret. Math..

[55]  Hortensia Galeana-Sánchez,et al.  Directed hypergraphs: A tool for researching digraphs and hypergraphs , 2009, Discuss. Math. Graph Theory.

[56]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.

[57]  Hortensia Galeana-Sánchez,et al.  Kernels in quasi-transitive digraphs , 2006, Discret. Math..

[58]  Hortensia Galeana-Sánchez,et al.  Monochromatic cycles and monochromatic paths in arc-colored digraphs , 2011, Discuss. Math. Graph Theory.

[59]  A. Włoch,et al.  On the existence of (k,k-1) - kernels in directed graphs , 2006 .

[60]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[61]  Assia Benabdallah,et al.  The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials , 2011 .

[62]  Camino Balbuena,et al.  A sufficient condition for kernel perfectness of a digraph in terms of semikernels modulo F , 2012 .

[63]  Assia Benabdallah,et al.  Controllability to trajectories for some parabolic systems of three and two equations by one control force , 2013 .

[64]  Victor Hernandez-Urbina,et al.  Applying DNA computing to diagnose-and-interfere hepatic fibrosis , 2010, 2010 Sixth International Conference on Natural Computation.

[65]  MICHO DURDEVICH GEOMETRY OF QUANTUM PRINCIPAL BUNDLES III Structure of Calculi and Around , 2010 .

[66]  W. Szumny A Construction that Preserves the Number of k-Kernels , 2011 .