Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review

Life cycle assessment (LCA) is a comprehensive method used to investigate the environmental impacts and energy use of a product throughout its entire life cycle. For solar photovoltaic (PV) technologies, LCA studies need to be conducted to address environmental and energy issues and foster the development of PV technologies in a sustainable manner. This paper reviews and analyzes LCA studies on solar PV technologies, such as silicon, thin film, dye-sensitized solar cell, perovskite solar cell, and quantum dot-sensitized solar cell. The PV life cycle assumes a cradle-to-grave mechanism, starting from the extraction of raw materials until the disposal or recycling of the solar PV. Three impact assessment methods in LCA were reviewed and summarized, namely, cumulative energy demand (CED), energy payback time (EPBT), and GHG emission rate, based on data and information published in the literature. LCA results show that mono-crystalline silicon PV technology has the highest energy consumption, longest EPBT, and highest greenhouse gas emissions rate compared with other solar PV technologies.

[1]  Hubert Aulich,et al.  Crystalline silicon feedstock for solar cells , 2002 .

[2]  Riccardo Battisti,et al.  Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology , 2005 .

[3]  Chris Yuan,et al.  Comparison of life cycle environmental impacts of different perovskite solar cell systems , 2017 .

[4]  Zengwei Yuan,et al.  Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China , 2015 .

[5]  F. Godlee An international standard for disclosure of clinical trial information , 2006, BMJ : British Medical Journal.

[6]  Hyung Chul Kim,et al.  Emissions from photovoltaic life cycles. , 2008, Environmental science & technology.

[7]  Brian Azzopardi,et al.  Life cycle analysis for future photovoltaic systems using hybrid solar cells , 2010 .

[8]  K. E. Jasim Dye Sensitized Solar Cells - Working Principles, Challenges and Opportunities , 2011 .

[9]  Hyung Chul Kim,et al.  Photovoltaics: Life-cycle Analyses , 2011 .

[10]  Kazuhiko Kato,et al.  Energy pay‐back time and life‐cycle CO2 emission of residential PV power system with silicon PV module , 1998 .

[11]  Vasilis Fthenakis,et al.  Life cycle impact analysis of cadmium in CdTe PV production , 2004 .

[12]  Umberto Desideri,et al.  Life Cycle Assessment of a ground-mounted 1778 kWp photovoltaic plant and comparison with traditional energy production systems , 2012 .

[13]  Gregg Marland,et al.  Net energy analysis of five energy systems , 1977 .

[14]  C. W. Chan,et al.  Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems , 2016 .

[15]  Steven Van Passel,et al.  Life cycle analyses of organic photovoltaics: a review , 2013 .

[16]  R. Frischknecht,et al.  Life‐cycle assessment of photovoltaic systems: results of Swiss studies on energy chains , 1998 .

[17]  Matthias Fischer,et al.  Prospective CO2 emissions from energy supplying systems: photovoltaic systems and conventional grid within Spanish frame conditions , 2010 .

[18]  Kosuke Kurokawa,et al.  A comparative study on cost and life‐cycle analysis for 100 MW very large‐scale PV (VLS‐PV) systems in deserts using m‐Si, a‐Si, CdTe, and CIS modules , 2008 .

[19]  Evert Nieuwlaar,et al.  Energy viability of photovoltaic systems , 2000 .

[20]  Maria Laura Parisi,et al.  The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach , 2014 .

[21]  H. K. Jun,et al.  Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers , 2013 .

[22]  Kiyo Kurisu,et al.  Life cycle impact assessment and interpretation of municipal solid waste management scenarios based on the midpoint and endpoint approaches , 2011 .

[23]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[24]  Gregory A. Keoleian,et al.  Parameters affecting the life cycle performance of PV technologies and systems , 2007 .

[25]  Anna Stoppato,et al.  Life cycle assessment of photovoltaic electricity generation , 2008 .

[26]  Vasilis Fthenakis,et al.  Life Cycle Greenhouse Gas Emissions of Thin‐film Photovoltaic Electricity Generation , 2012 .

[27]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[28]  Frederik C. Krebs,et al.  Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing , 2012 .

[29]  Hyung Chul Kim,et al.  Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation , 2012 .

[30]  Anders Hagfeldt,et al.  Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system , 2001 .

[31]  P. Norton,et al.  CO sub 2 emissions from coal-fired and solar electric power plants , 1990 .

[32]  Ronald Wilson,et al.  The embodied energy payback period of photovoltaic installations applied to buildings in the U.K. , 1996 .

[33]  Maria Laura Parisi,et al.  Development of dye sensitized solar cells: A life cycle perspective for the environmental and market potential assessment of a renewable energy technology , 2013 .

[34]  E. Alsema Energy pay‐back time and CO2 emissions of PV systems , 2000 .

[35]  M. Heben,et al.  Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab , 2016 .

[36]  M. Hanafiah Quantifying effects of physical, chemical and biological stressors in life cycle assessment , 2013 .

[37]  Hyung Chul Kim,et al.  Energy payback and life‐cycle CO2 emissions of the BOS in an optimized 3·5 MW PV installation , 2006 .

[38]  R. Basosi,et al.  Life Cycle Assessment of Gratzel-type cell production for non conventional photovoltaics from novel Organic Dyes , 2011 .

[39]  Vasilis Fthenakis,et al.  Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity 3rd Edition , 2016 .

[40]  Yong Soo Kang,et al.  Self-assembled CdS quantum dots-sensitized TiO2 nanospheroidal solar cells: Structural and charge transport analysis , 2009 .

[41]  Peishi Wu,et al.  Review on Life Cycle Assessment of Greenhouse Gas Emission Profit of Solar Photovoltaic Systems , 2017 .

[42]  Saïcha Gerbinet,et al.  Life Cycle Analysis (LCA) of photovoltaic panels: A review , 2014 .

[43]  Hiroki Hondo,et al.  Life cycle GHG emission analysis of power generation systems: Japanese case , 2005 .

[44]  Vasilis Fthenakis,et al.  Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems , 2014 .

[45]  N. Jungbluth Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database , 2005 .

[46]  Gregg Marland,et al.  Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950-1982 , 1984 .

[47]  Kosuke Kurokawa,et al.  A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega‐solar plant , 2011 .

[48]  Kazuhiko Kato,et al.  A life-cycle analysis on thin-film CdS/CdTe PV modules , 2001 .

[49]  Peishi Wu,et al.  Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study , 2017 .

[50]  K. Sopian,et al.  Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers , 2016 .

[51]  Silvia Bargigli,et al.  Life cycle assessment and energy pay-back time of advanced photovoltaic modules : CdTe and CIS compared to poly-Si , 2007 .

[52]  E. Alsema,et al.  Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–early 2005 status , 2006 .

[53]  M. S. Su’ait,et al.  Review on polymer electrolyte in dye-sensitized solar cells (DSSCs) , 2015 .

[54]  Vasilis Fthenakis,et al.  CdTe photovoltaics: Life cycle environmental profile and comparisons , 2007 .

[55]  Yelin Deng,et al.  Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing. , 2015, ChemSusChem.

[56]  Vasilis Fthenakis,et al.  Life Cycle Assessment of Photovoltaics , 2017 .

[57]  Yuh‐Lang Lee,et al.  Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications , 2008, Nanotechnology.

[58]  Hongxing Yang,et al.  Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems , 2013 .

[59]  Marco Raugei,et al.  Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks , 2009 .

[60]  Roberto Turconi,et al.  Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations , 2013 .

[61]  Wei Luo,et al.  A comparative life-cycle assessment of photovoltaic electricity generation in Singapore by multicrystalline silicon technologies , 2018 .

[62]  Varun,et al.  Life cycle assessment of solar PV based electricity generation systems: A review , 2010 .

[63]  E. Alsema,et al.  Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic Module Production , 2005 .

[64]  Life Cycle Assessment of PV systems , 2011 .

[65]  Kamaruzzaman Sopian,et al.  Review on the development of natural dye photosensitizer for dye-sensitized solar cells , 2014 .

[66]  Jiawei Gong,et al.  Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials , 2012 .

[67]  Wei Chen,et al.  Environmental impact assessment of monocrystalline silicon solar photovoltaic cell production: a case study in China , 2016 .

[68]  Frederik C. Krebs,et al.  A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions , 2011 .

[69]  Lin Lu,et al.  Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong , 2010 .

[70]  E. Płaczek-Popko,et al.  Top PV market solar cells 2016 , 2017 .

[71]  Roberto Dones,et al.  Life Cycle Assessment of Photovoltaics; Update of the ecoinvent Database , 2007 .

[72]  Eric Hu,et al.  Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system , 2010 .

[73]  Kosuke Kurokawa,et al.  Life-cycle analyses of very-large scale PV systems using six types of PV modules , 2010 .

[74]  Ole Jørgen Hanssen,et al.  Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power , 2011 .

[75]  Qiang Yao,et al.  Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China , 2016 .

[76]  Christopher J. Koroneos,et al.  Carbon footprint of polycrystalline photovoltaic systems , 2014 .

[77]  Tak Hur,et al.  Evaluation of the environmental performance of sc-Si and mc-Si PV systems in Korea , 2014 .

[78]  Thomas L. Theis,et al.  An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use , 2011 .

[79]  Jyotirmay Mathur,et al.  Life Cycle Analysis of Solar PV System : A Review , 2014 .

[80]  A. Nozik Quantum dot solar cells , 2002 .

[81]  R. Kannan,et al.  Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore , 2006 .