Bayesian Estimation of MIRT Models with General and Specific Latent Traits in MATLAB

Multidimensional item response models have been developed to incorporate a general trait and several specific trait dimensions. Depending on the structure of these latent traits, different models can be considered. This paper provides the requisite information and description of software that implement the Gibbs sampling procedures for three such models with a normal ogive form. The software developed is written in the MATLAB package IRTm2noHA. The package is flexible enough to allow a user the choice to simulate binary response data with a latent structure involving general and specific traits, specify prior distributions for model parameters, check convergence of the MCMC chain, and obtain Bayesian fit statistics. Illustrative examples are provided to demonstrate and validate the use of the software package.

[1]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[2]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[3]  P. Fayers Item Response Theory for Psychologists , 2004, Quality of Life Research.

[4]  Dimitris Rizopoulos,et al.  ltm: An R Package for Latent Variable Modeling and Item Response Analysis , 2006 .

[5]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[6]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  H. Stern,et al.  Posterior predictive model checking in hierarchical models , 2003 .

[8]  J. Gustafsson,et al.  General and Specific Abilities as Predictors of School Achievement. , 1993, Multivariate behavioral research.

[9]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[10]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[11]  John Schmid,et al.  The development of hierarchical factor solutions , 1957 .

[12]  S. Sahu Bayesian Estimation and Model Choice in Item Response Models , 2002 .

[13]  Noah Kaplan,et al.  Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation , 2005, Political Analysis.

[14]  Jeroen K. Vermunt,et al.  Estimation of Models in a Rasch Family for Polytomous Items and Multiple Latent Variables , 2007 .

[15]  Anne Boomsma,et al.  Essays on Item Response Theory , 2000 .

[16]  Donald Hedeker,et al.  Full-information item bi-factor analysis , 1992 .

[17]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[18]  B. Reeve,et al.  Item Response Theory and its Applications to Patient-Reported Outcomes Measurement , 2005, Evaluation & the health professions.

[19]  Allan Birnbaum STATISTICAL THEORY FOR LOGISTIC MENTAL TEST MODELS WITH A PRIOR DISTRIBUTION OF ABILITY , 1967 .

[20]  David Thissen,et al.  On the relationship between the higher-order factor model and the hierarchical factor model , 1999 .

[21]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[22]  M. Reckase Multidimensional Item Response Theory , 2009 .

[23]  Hal S. Stern,et al.  Posterior Predictive Assessment of Item Response Theory Models , 2006 .

[24]  G. Imbens The Role of the Propensity Score in Estimating Dose-Response Functions , 1999 .

[25]  R. Brennan,et al.  Test equating : methods and practices , 1995 .

[26]  Daniel M. Bolt,et al.  A Comparison of Alternative Models for Testlets , 2006 .

[27]  I. W. Molenaar,et al.  Rasch models: foundations, recent developments and applications , 1995 .

[28]  Brian W. Junker,et al.  Applications and Extensions of MCMC in IRT: Multiple Item Types, Missing Data, and Rated Responses , 1999 .

[29]  Stanley A. Mulaik,et al.  First Order or Higher Order General Factor , 1997 .

[30]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[31]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[32]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[33]  Ivo W. Molenaar,et al.  Estimation of Item Parameters , 1995 .

[34]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[35]  P. Mair,et al.  Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R , 2007 .

[36]  Yanyan Sheng,et al.  A MATLAB Package for Markov Chain Monte Carlo with a Multi-Unidimensional IRT Model , 2008 .

[37]  Yanyan Sheng,et al.  BAYESIAN IRT MODELS INCORPORATING GENERAL AND SPECIFIC ABILITIES , 2009 .

[38]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[39]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .

[40]  Matthew S. Johnson,et al.  Marginal Maximum Likelihood Estimation of Item Response Models in R , 2007 .

[41]  Levent Kirisci,et al.  An application of item response theory to the DSM-III-R criteria for borderline personality disorder. , 2007, Journal of personality disorders.

[42]  Yanyan Sheng,et al.  Markov Chain Monte Carlo Estimation of Normal Ogive IRT Models in MATLAB , 2008 .

[43]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[44]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .

[45]  Christopher K. Wikle,et al.  Bayesian Multidimensional IRT Models With a Hierarchical Structure , 2008 .

[46]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[47]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[48]  D. Rindskopf,et al.  Some Theory and Applications of Confirmatory Second-Order Factor Analysis. , 1988, Multivariate behavioral research.