Robust speed control of IM with torque feedforward control

The authors describe a digital signal processor-based (DSP-based) robust speed control for an induction motor (IM) with the load-torque observer and the torque feedforward control. In the proposed system, the load torque is estimated by the minimal-order state observer based on the torque component of a vector-controlled IM. Using the load-torque observer, a speed controller can be provided with a torque feedforward loop, thus realizing a robust speed control system. The control system is composed of a DSP-based controller, a voltage-fed pulsewidth modulated (PWM) transistor inverter and a 3.7 kW IM system. An eccentric load with an arm and a weight is coupled to the IM and it generates the sinusoidal gravitational fluctuating torque. Experimental results show robustness against disturbance torque and system parameter change. >