Ammonium Chloride‐Promoted Rapid Synthesis of Monosubstituted Ureas under Microwave Irradiation

[1]  A. Tiwari,et al.  Amide Bond Bioisosteres: Strategies, Synthesis and Successes. , 2020, Journal of medicinal chemistry.

[2]  Arun K. Ghosh,et al.  Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. , 2019, Journal of medicinal chemistry.

[3]  Y. Hamashima,et al.  Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process , 2019, Organic Process Research & Development.

[4]  A. Shaabani,et al.  Ammonium chloride-catalyzed green multicomponent synthesis of dihydropyrazine and tetrahydrodiazepine derivatives “on water” , 2018, Molecular Diversity.

[5]  A. Faraji,et al.  A green and facile approach for the synthesis of N-monosubstituted ureas in water: Pd catalyzed reaction of arylcyanamides (an unexpected behavior of electron withdrawing groups) , 2018, Polyhedron.

[6]  M. Zolfigol,et al.  Applications of biological urea-based catalysts in chemical processes , 2018, Molecular Catalysis.

[7]  J. Stierstorfer,et al.  Methylsemicarbazide as a Ligand in Late 3d Transition Metal Complexes. , 2018, Chemistry.

[8]  Simone Brogi,et al.  ( S)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic Acid (AMPA) and Kainate Receptor Ligands: Further Exploration of Bioisosteric Replacements and Structural and Biological Investigation. , 2018, Journal of medicinal chemistry.

[9]  E. Åkerblom,et al.  Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffold. , 2018, European journal of medicinal chemistry.

[10]  M. Iqbal,et al.  Eco-friendly synthesis of pyrimidines and its derivatives: A review on broad spectrum bioactive moiety with huge therapeutic profile , 2018 .

[11]  Jean Martínez,et al.  Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. , 2017, Chemical reviews.

[12]  Kapil Kumar,et al.  Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review , 2017, European Journal of Medicinal Chemistry.

[13]  U. Rashid,et al.  Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. , 2016, European journal of medicinal chemistry.

[14]  Tun-Cheng Chien,et al.  One-Pot Synthesis of N-Monosubstituted Ureas from Nitriles via Tiemann Rearrangement , 2015 .

[15]  P. Wipf,et al.  Synthesis and structure–activity relationships of small molecule inhibitors of the simian virus 40 T antigen oncoprotein, an anti-polyomaviral target. , 2014, Bioorganic & medicinal chemistry.

[16]  C. Fishwick,et al.  Pyridine-3-carboxamide-6-yl-ureas as novel inhibitors of bacterial DNA gyrase: structure based design, synthesis, SAR and antimicrobial activity. , 2014, European journal of medicinal chemistry.

[17]  M. Bhardwaj,et al.  Selective Synthesis of Mono-substituted Ureas in Low Melting Citric Acid-Urea-Mannitol Mixture , 2014 .

[18]  Huajian Xu,et al.  Benzoic Acid-Catalyzed Transamidation Reactions of Carboxamides, Phthalimide, Ureas and Thioamide with Amines , 2014 .

[19]  L. Becerra-Figueroa,et al.  Transamidation of carboxamides catalyzed by Fe(III) and water. , 2014, The Journal of organic chemistry.

[20]  A. Saxena,et al.  Identification of novel urea derivatives as PTP1B inhibitors: synthesis, biological evaluation and structure–activity relationships , 2013 .

[21]  É. Marsault,et al.  Efficient Synthesis of 2-Ureaguanines via the in situ Reactions of 2-Isocyanatopurines with Amines , 2013 .

[22]  R. Bunce,et al.  Ammonium Chloride-catalyzed Synthesis of Benzo-fused Heterocycles from o-Substituted Anilines and Orthoesters , 2013 .

[23]  M. Degani,et al.  Carboxylic acid-catalyzed one-pot synthesis of cyanoacetylureas and their cyclization to 6-aminouracils in guanidine ionic liquid , 2013, Monatshefte für Chemie - Chemical Monthly.

[24]  Y. Shimizu,et al.  Microwave-assisted deacylation of unactivated amides using ammonium-salt-accelerated transamidation. , 2012, Angewandte Chemie.

[25]  S. Ley,et al.  Continuous-Flow Processing of Gaseous Ammonia Using a Teflon AF-2400 Tube-in-Tube Reactor: Synthesis of Thioureas and In-Line Titrations , 2012, Synlett.

[26]  H. Neumann,et al.  Efficient copper(II)-catalyzed transamidation of non-activated primary carboxamides and ureas with amines. , 2012, Angewandte Chemie.

[27]  T. Skrydstrup,et al.  Palladium-catalyzed N-acylation of monosubstituted ureas using near-stoichiometric carbon monoxide. , 2012, The Journal of organic chemistry.

[28]  Jonathan Clayden,et al.  Die Harnstoff‐Renaissance , 2011 .

[29]  J. Clayden,et al.  The urea renaissance. , 2011, Angewandte Chemie.

[30]  BinQing Wei,et al.  Rational design of phosphoinositide 3-kinase α inhibitors that exhibit selectivity over the phosphoinositide 3-kinase β isoform. , 2011, Journal of medicinal chemistry.

[31]  N. Foroughifar,et al.  Ammonium Chloride–Catalyzed One-Pot Synthesis of Tetrahydrobenzo[α]xanthen-11-one Derivatives Under Solvent-Free Conditions , 2011 .

[32]  S. Buchwald,et al.  Synthesis of unsymmetrical diarylureas via Pd-catalyzed C-N cross-coupling reactions. , 2011, Organic letters.

[33]  L. D. Luca,et al.  Microwave-Assisted Synthesis of N-Monosubstituted Urea Derivatives , 2010 .

[34]  P. Schreiner,et al.  (Thio)urea organocatalysis--what can be learnt from anion recognition? , 2009, Chemical Society reviews.

[35]  Zhiqian Guo,et al.  Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor. , 2008, Journal of medicinal chemistry.

[36]  A. Shaabani,et al.  Ammonium chloride catalyzed one-pot synthesis of imidazo[1,2-a]pyridines , 2008 .

[37]  Zhiqian Guo,et al.  5-Aryluracils as potent GnRH antagonists-Characterization of atropisomers. , 2008, Bioorganic & medicinal chemistry letters.

[38]  Ling Shi,et al.  Ammonium chloride-catalyzed carbon–sulfur bond formation in water , 2008 .

[39]  J. Azizian,et al.  Ammonium chloride catalyzed one-pot synthesis of diindolylmethanes under solvent-free conditions , 2007 .

[40]  S. Connon Organocatalysis mediated by (thio)urea derivatives. , 2006, Chemistry.

[41]  C. Starbuck,et al.  Identification of Ammonium Chloride as an Effective Promoter of the Asymmetric Hydrogenation of a β-Enamine Amide , 2006 .

[42]  Jieping Zhu,et al.  Ammonium chloride promoted Ugi four-component, five-center reaction of alpha-substituted alpha-isocyano acetic acid: a strong solvent effect. , 2004, Organic letters.

[43]  M. Gütschow,et al.  RECENT DEVELOPMENTS IN HYDANTOIN CHEMISTRY. A REVIEW , 2004 .

[44]  Jieping Zhu,et al.  Ammonium chloride-promoted four-component synthesis of pyrrolo[3,4-b]pyridin-5-one. , 2002, Journal of the American Chemical Society.

[45]  K. Okamoto,et al.  Highly selective aldose reductase inhibitors. 1. 3-(Arylalkyl)-2,4,5-trioxoimidazolidine-1-acetic acids. , 1996, Journal of Medicinal Chemistry.

[46]  C. Müller,et al.  Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors. , 1993, Journal of medicinal chemistry.

[47]  S. Duke,et al.  Overview of herbicide mechanisms of action. , 1990, Environmental health perspectives.

[48]  H. Taylor,et al.  Reactions of amines. 20. Syntheses of racemic and optically active alkylhydrazines and N-acyl-N-alkyl- and N-acyl-N-arylhydrazines , 1976 .

[49]  W. Jencks,et al.  Urea synthesis from amines and cyanic acid: kinetic evidence for a zwitterionic intermediate , 1974 .

[50]  D. E. Moreland,et al.  Mechanisms of Action of Herbicides , 1967 .

[51]  G. Kohnstam,et al.  191. The decomposition of inorganic cyanates in water , 1956 .

[52]  H. C. Bucha,et al.  3-(p-Chlorophenyl)-1,1-dimethylurea; a new herbicide. , 1951, Science.

[53]  K. Blanchard,et al.  THE UREA DEARRANGEMENT. II , 1923 .

[54]  T. L. Davis,et al.  THE UREA DEARRANGEMENT , 1922 .

[55]  Friedrich Wöhler,et al.  Ueber künstliche Bildung des Harnstoffs , 1828 .