Wavelets on the n-sphere and related manifolds

We present a purely group-theoretical derivation of the continuous wavelet transform (CWT) on the (n-1)-sphere Sn-1. based on the construction of general coherent states associated to square integrable group representations. The parameter space of the CWT, X similar to SO(n)xR*(+), is embedded into the generalized Lorentz group SO0(n,1) via the Iwasawa decomposition, so that X similar or equal to SO0(n,1)IN, where N similar or equal to Rn-1. Then the CWT on Sn-1 is derived from a suitable unitary representation of SO0(n,1) acting in the space L-2(Sn-1,d mu) of finite energy signals on Sn-1, which turns out to be square integrable over X. We find a necessary condition for the admissibility of a wavelet, in the form of a zero mean condition, which entails all the usual filtering properties of the CWT. Next the Euclidean limit of this CWT on Sn-1 is obtained by redoing the construction on a sphere of radius R and performing a group contraction for R-->infinity, from which one recovers the usual CWT on flat Euclidean space. Finally, we discuss the extension of this construction to the two-sheeted hyperboloid Hn-1SO0(n-1,1)/SO(n-1) and some other Riemannian symmetric spaces. (C) 1998 American Institute of Physics. [S0022-2488(98)00308-9].

[1]  Gabriele Steidl,et al.  Kernels of Spherical Harmonics and Spherical Frames Advanced Topics in Multivariate Approximation 1 , 1996 .

[2]  P. Vandergheynst,et al.  Wavelets on the 2-sphere: A group-theoretical approach , 1999 .

[3]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[4]  Jean-Pierre Antoine,et al.  Image analysis with 2D wavelet transform: Detection of position, orientation and visual contrast of simple objects , 1991 .

[6]  Locally Supported Wavelets on the Sphere , 1998 .

[7]  F. J. Narcowich,et al.  Nonstationary Wavelets on them-Sphere for Scattered Data , 1996 .

[8]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[9]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[10]  P. Leboeuf,et al.  Eigenfunctions of non-integrable systems in generalised phase spaces , 1990 .

[11]  E. Wigner,et al.  On the Contraction of Groups and Their Representations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[13]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[14]  Willi Freeden,et al.  Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination , 1997 .

[15]  J. Mickelsson,et al.  Contractions of representations of de Sitter groups , 1972 .

[16]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[17]  Lizhong Peng,et al.  Admissible wavelets associated with the Heisenberg group , 1997 .

[18]  R. Gilmore GEOMETRY OF SYMMETRIZED STATES. , 1972 .

[19]  Matthias Holschneider Wavelet analysis on the circle , 1990 .

[20]  A. Dooley Contractions of Lie groups and applications to analysis , 1984 .

[21]  Anthony H. Dooley,et al.  Contractions of rotation groups and their representations , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Marc Duval-Destin Analyse spatiale et spatio-temporelle de la stimulation visuelle à l'aide de la transformée en ondelettes , 1991 .

[23]  Jianxun He,et al.  Admissible Wavelets Associated with the Affine Automorphism Group of the Siegel Upper Half-Plane , 1997 .

[24]  R. Thews,et al.  Wavelets in Physics , 1998 .

[25]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[26]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[27]  S. Helgason LIE GROUPS AND SYMMETRIC SPACES. , 1968 .

[28]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[29]  R. Takahashi,et al.  Sur les représentations unitaires des groupes de Lorentz généralisés , 1963 .

[30]  Matthias Holschneider,et al.  Continuous wavelet transforms on the sphere , 1996 .

[31]  Anthony H. Dooley,et al.  On contractions of semisimple Lie groups , 1985 .

[32]  Eugene J. Saletan,et al.  Contraction of Lie Groups , 1961 .

[33]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[34]  W. Dahmen,et al.  Multiresolution analysis and wavelets on S2 and S3 , 1995 .

[35]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[36]  A. U. Klimyk,et al.  Representation Theory and Noncommutative Harmonic Analysis II , 1988 .

[37]  J. Antoine,et al.  Coherent states and their generalizations - A mathematical overview , 1995 .

[38]  Jean-Pierre Antoine,et al.  Image analysis with two-dimensional continuous wavelet transform , 1993, Signal Process..

[39]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[40]  Gabriele Steidl,et al.  Kernels of spherical harmonics and spherical frames , 1996 .

[41]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .