Progress and prospective of solid-state lithium batteries

Abstract The development of lithium-ion batteries has energized studies of solid-state batteries, because the non-flammability of their solid electrolytes offers a fundamental solution to safety concerns. Since poor ionic conduction in solid electrolytes is a major drawback in solid-state batteries, such studies have been focused on the enhancement of ionic conductivity. The studies have identified some high performance solid electrolytes; however, some disadvantages have remained hidden until their use in batteries. This paper reviews the development of solid electrolytes and their application to solid-state lithium batteries.

[1]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[2]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[3]  J. Bates,et al.  Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics , 1999 .

[4]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[5]  Tsutomu Minami,et al.  Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .

[6]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[7]  A. Hayashi,et al.  Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries , 2009 .

[8]  Kiyoharu Tadanaga,et al.  Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes , 2010 .

[9]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[10]  K. Kanehori,et al.  Thin film solid electrolyte and its application to secondary lithium cell , 1983 .

[11]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[12]  A. Hayashi,et al.  Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O-TiO2 films on LiCoO2 electrode , 2010 .

[13]  S. Kondo,et al.  Solid state lithium battery with oxysulfide glass , 1996 .

[14]  Bruno Scrosati,et al.  Lithium Rocking Chair Batteries: An Old Concept? , 1992 .

[15]  A. West Ionic conductivity of oxides based on Li4SiO4 , 1973 .

[16]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[17]  Tomonari Takeuchi,et al.  Upper Voltage and Temperature Dependencies for an All-Solid-State In / LiCoO2 Cell Using Sulfide Glass Electrolyte , 2008 .

[18]  Jeff Dahn,et al.  Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure , 1990 .

[19]  S. Pizzini Ionic conductivity in lithium compounds , 1971 .

[20]  M. Armand,et al.  Building better batteries , 2008, Nature.

[21]  Emanuel Peled,et al.  Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions , 1988 .

[22]  B. S. Kwak,et al.  Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure , 1995 .

[23]  K. Takada,et al.  Lithium ion conductive glass and its application to solid state batteries , 1998 .

[24]  Y. Takeda,et al.  Rechargeable solid electrolyte cells with a copper ion conductor, RB4Cu16I7−xCl13+x , 1986 .

[25]  P. Hagenmuller,et al.  Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .

[26]  A. Schneider,et al.  The lithium—iodine cell for medical and commercial applications , 1980 .

[27]  B. S. Kwak,et al.  Thin-film rechargeable lithium batteries , 1994 .

[28]  N. Machida,et al.  Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries , 2004 .

[29]  T. Minami,et al.  Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100−x)(0.6Li2S·0.4SiS2)·xLi4SiO4 obtained by mechanochemical synthesis , 2001 .

[30]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[31]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[32]  J. Winand,et al.  Nouvelles solutions solides LI(MIV)2−x(NIV)x(PO4)3 (L = Li,Na M,N = Ge,Sn,Ti,Zr,Hf) synthèse et étude par diffraction x et conductivité ionique , 1991 .

[33]  A. Yamada,et al.  Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system , 2004 .

[34]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[35]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[36]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[37]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[38]  N. Machida,et al.  All-Solid-State Lithium Battery with LiCo0.3Ni0.7 O 2 Fine Powder as Cathode Materials with an Amorphous Sulfide Electrolyte , 2002 .

[39]  B. Scrosati,et al.  Silver solid-state batteries: A 33 years storage realities , 2007 .

[40]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[41]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[42]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[43]  J. Whitacre,et al.  Radio Frequency Magnetron-Sputtered LiCoPO4 Cathodes for 4.8 V Thin-Film Batteries , 2003 .

[44]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[45]  Atsushi Sakuda,et al.  Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated with Li2O-SiO2 Glasses , 2008 .

[46]  T. Minami,et al.  Mechanochemical Synthesis of New Amorphous Materials of 60Li2S·40SiS2 with High Lithium Ion Conductivity , 2004 .

[47]  A. West,et al.  Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4 , 1985 .

[48]  S. Yamada,et al.  Solid‐State Ionics: High Copper Ion Conductivity of the System CuCl ‐ CuI ‐ RbCl , 1979 .

[49]  C. Julien Technological applications of solid state ionics , 1990 .

[50]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[51]  T. Minami,et al.  Stabilization of superionic α-Agl at room temperature in a glass matrix , 1991, Nature.

[52]  S. Kondo,et al.  Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4Li2SSiS2 , 1994 .

[53]  Y. Takeda,et al.  Rechargeable all solid-state cell with high copper ion conductor and copper chevrel phase , 1987 .

[54]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[55]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[56]  Liquan Chen,et al.  High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .

[57]  J. N. Mrgudich Conductivity of Silver Iodide Pellets for Solid‐Electrolyte Batteries , 1960 .

[58]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[59]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[60]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[61]  Tetsuro Kobayashi,et al.  Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte , 2012 .

[62]  S. Kondo,et al.  Compatibility of Lithium Ion Conductive Sulfide Glass with Carbon-Lithium Electrode , 2003 .

[63]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[64]  Hiroshi Senoh,et al.  All-Solid-State Lithium Secondary Battery with Li2S – C Composite Positive Electrode Prepared by Spark-Plasma-Sintering Process , 2010 .

[65]  P. J. Bray,et al.  NMR Studies of 7Li in Polycrystalline Lithium Nitride , 1966 .

[66]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[67]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[68]  Boone B. Owens,et al.  Ambient temperature solid state batteries , 1992 .

[69]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[70]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[71]  A. Hayashi,et al.  Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries , 2011 .

[72]  Tetsuro Nakamura,et al.  Lithium ion conductivity in the perovskite-type LiTaO3-SrTiO3 solid solution , 1995 .

[73]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[74]  David Lindley,et al.  Smart grids: The energy storage problem , 2010, Nature.

[75]  M. Osada,et al.  Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode , 2005 .

[76]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[77]  Yo Kobayashi,et al.  Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering , 1999 .

[78]  B. Owens,et al.  High-Conductivity Solid Electrolytes: MAg4I5 , 1967, Science.

[79]  Venkataraman Thangadurai,et al.  Developments of high-voltage all-solid-state thin-film lithium ion batteries , 2006 .

[80]  Y. Jang Li Diffusion and High-Voltage Cycling Behavior of Thin-Film LiCoO2 Cathodes , 2001 .

[81]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[82]  M. Klingler,et al.  Coulometric titration of substituted LixLa(2−x)/3 TiO3 , 1997 .

[83]  S. Kondo,et al.  Solid-state lithium battery with graphite anode , 2003 .

[84]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[85]  K. Tadanaga,et al.  Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode , 2011 .

[86]  K. Kanehori,et al.  New amorphous thin films of lithium ion conductive solid electrolyte , 1983 .

[87]  S. Orimo,et al.  Lithium superionic conduction in lithium borohydride accompanied by structural transition , 2007 .

[88]  K. Tadanaga,et al.  All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes , 2005 .

[89]  Liquan Chen,et al.  Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .

[90]  M. Osada,et al.  Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte , 2011 .

[91]  T. Minami,et al.  Characterization of Li2S–SiS2–LixMOy (M=Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling , 2002 .

[92]  S. Orimo,et al.  Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. , 2009, Journal of the American Chemical Society.

[93]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[94]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[95]  T. Sasaki,et al.  Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries , 2011 .

[96]  A. Hayashi,et al.  All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes , 2011 .

[97]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[98]  J. Kennedy,et al.  Preparation and conductivity measurements of SiS2Li2S glasses doped with LiBr and LiCl , 1986 .

[99]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[100]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[101]  Y. Sadaoka,et al.  Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) , 1991 .

[102]  G. Adachi,et al.  High Li+ Conducting Ceramics , 1994 .

[103]  D. K. Chakrabarty,et al.  Structural and dielectric studies of some perovskite-type titanates , 1979 .

[104]  J. Kennedy,et al.  A Highly Conductive Li+‐Glass System: ( 1 − x ) ( 0.4SiS2 ‐ 0.6Li2 S ) ‐ xLil , 1986 .

[105]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[106]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[107]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[108]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[109]  T. Sasaki,et al.  All solid state Li-ion secondary battery with FeS anode , 2005 .

[110]  Nobuya Machida,et al.  Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes , 2004 .

[111]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[112]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[113]  S. Kondo,et al.  Application of Li3PO4-Li2S-SiS2 glass to the solid state secondary batteries , 1995 .

[114]  T. Minami,et al.  Structural Studies in Lithium Insertion into SnO ­ B 2 O 3 Glasses and Their Applications for All-Solid-State Batteries , 2003 .

[115]  K. Takada,et al.  High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte , 2011 .

[116]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[117]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[118]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[119]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[120]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[121]  Jean-Marie Tarascon,et al.  Effect of Particle Size on Lithium Intercalation into α ­ Fe2 O 3 , 2003 .

[122]  T. Abe,et al.  A new kind of all-solid-state thin-film-type lithium-ion battery developed by applying a D.C. high voltage , 2006 .

[123]  M. Osada,et al.  Lithium silicon sulfide as an anode material in all-solid-state lithium batteries , 2010 .

[124]  T. Abe,et al.  A novel all-solid-state thin-film-type lithium-ion battery with in situ prepared positive and negative electrode materials , 2009 .

[125]  Michel Ribes,et al.  Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .

[126]  Annie Pradel,et al.  Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching , 1986 .

[127]  R. Huggins Lithium alloy negative electrodes formed from convertible oxides , 1998 .