Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny.

An ambitious, yet fundamental goal for comparative biology is to understand the evolutionary relationships for all of life. However, many important taxonomic groups have remained recalcitrant to inclusion into broader scale studies. Here, we focus on collection of 9 new 454 transcriptome data sets from Ostracoda, an ancient and diverse group with a dense fossil record, which is often undersampled in broader studies. We combine the new transcriptomes with a new morphological matrix (including fossils) and existing expressed sequence tag, mitochondrial genome, nuclear genome, and ribosomal DNA data. Our analyses lead to new insights into ostracod and pancrustacean phylogeny. We obtained support for three epic pancrustacean clades that likely originated in the Cambrian: Oligostraca (Ostracoda, Mystacocarida, Branchiura, and Pentastomida); Multicrustacea (Copepoda, Malacostraca, and Thecostraca); and a clade we refer to as Allotriocarida (Hexapoda, Remipedia, Cephalocarida, and Branchiopoda). Within the Oligostraca clade, our results support the unresolved question of ostracod monophyly. Within Multicrustacea, we find support for Thecostraca plus Copepoda, for which we suggest the name Hexanauplia. Within Allotriocarida, some analyses support the hypothesis that Remipedia is the sister taxon to Hexapoda, but others support Branchiopoda + Cephalocarida as the sister group of hexapods. In multiple different analyses, we see better support for equivocal nodes using slow-evolving genes or when excluding distant outgroups, highlighting the increased importance of conditional data combination in this age of abundant, often anonymous data. However, when we analyze the same set of species and ignore rate of gene evolution, we find higher support when including all data, more in line with a "total evidence" philosophy. By concatenating molecular and morphological data, we place pancrustacean fossils in the phylogeny, which can be used for studies of divergence times in Pancrustacea, Arthropoda, or Metazoa. Our results and new data will allow for attributes of Ostracoda, such as its amazing fossil record and diverse biology, to be leveraged in broader scale comparative studies. Further, we illustrate how adding extensive next-generation sequence data from understudied groups can yield important new phylogenetic insights into long-standing questions, especially when carefully analyzed in combination with other data.

[1]  J. Boore,et al.  Phylogenetic position of the Pentastomida and (pan)crustacean relationships , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  Stefan Richter,et al.  The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea , 2002 .

[3]  J. Shultz,et al.  Phylogenetic analysis of arthropods using two nuclear protein–encoding genes supports a crustacean + hexapod clade , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[5]  Katharina Misof,et al.  A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. , 2009, Systematic biology.

[6]  D. Tautz,et al.  Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods , 1995, Nature.

[7]  Bryan Kolaczkowski,et al.  Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous , 2004, Nature.

[8]  Todd H. Oakley,et al.  Dispersal between shallow and abyssal seas and evolutionary loss and regain of compound eyes in cylindroleberidid ostracods: conflicting conclusions from different comparative methods. , 2012, Systematic biology.

[9]  N. Strausfeld Some observations on the sensory organization of the crustaceomorph Waptia fieldensis Walcott , 2011 .

[10]  Jeffrey L. Boore,et al.  Gene translocation links insects and crustaceans , 1998, Nature.

[11]  K. Martens,et al.  What are Ostracoda? A cladistic analysis of the extant superfamilies of the subclasses Myodocopa and Podocopa (Crustacea: Ostracoda) , 2005 .

[12]  Todd H. Oakley Myodocopa (Crustacea: Ostracoda) as models for evolutionary studies of light and vision: multiple origins of bioluminescence and extreme sexual dimorphism , 2005, Hydrobiologia.

[13]  Robert S. Sansom,et al.  Soft-part anatomy of the Early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida , 2010, Proceedings of the Royal Society B: Biological Sciences.

[14]  Seth Kaufman,et al.  MorphoBank: phylophenomics in the “cloud” , 2011, Cladistics : the international journal of the Willi Hennig Society.

[15]  Mark D. Sutton,et al.  A new phyllocarid (Crustacea: Malacostraca) from the Silurian Fossil–Lagerstätte of Herefordshire, UK , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  W. Rolfe,et al.  Nahecaris stuertzi, a phyllocarid crustacean from the Lower Devonian Hunsrück Slate , 1987 .

[17]  D. Waloszek,et al.  A Phosphatocopid Crustacean with Appendages from the Lower Cambrian , 2001, Science.

[18]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[19]  Daniel L. Ayres,et al.  BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics , 2011, Systematic biology.

[20]  S Conway Morris,et al.  The Cambrian "explosion": slow-fuse or megatonnage? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Reinhardt,et al.  A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). , 2009, Molecular phylogenetics and evolution.

[22]  Michael S. Y. Lee,et al.  Arthropod molecular divergence times and the Cambrian origin of pentastomids , 2010 .

[23]  E. Koonin,et al.  Orthology, paralogy and proposed classification for paralog subtypes. , 2002, Trends in genetics : TIG.

[24]  D. Waloszek,et al.  New pentastomids from the Late Cambrian of Sweden – deeper insight of the ontogeny of fossil tongue worms , 2011 .

[25]  Gonzalo Giribet,et al.  Arthropod phylogeny based on eight molecular loci and morphology , 2001, Nature.

[26]  H. Philippe,et al.  Improvement of molecular phylogenetic inference and the phylogeny of Bilateria , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Hui-Hsien Chou,et al.  DNA sequence quality trimming and vector removal , 2001, Bioinform..

[28]  T. Spears,et al.  Phylogeny of Selected Maxillopodan and Other Crustacean Taxa Based on 18S Ribosomal Nucleotide Sequences: A Preliminary Analysis , 1992 .

[29]  Bryan D. Kolaczkowski,et al.  A mixed branch length model of heterotachy improves phylogenetic accuracy. , 2008, Molecular biology and evolution.

[30]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[31]  J. Wägele,et al.  Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships , 2009, BMC Evolutionary Biology.

[32]  J. Boore,et al.  Hexapod Origins: Monophyletic or Paraphyletic? , 2003, Science.

[33]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[34]  J. Shultz,et al.  Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences , 2010, Nature.

[35]  G. Tanaka Morphological design and fossil record of the podocopid ostracod naupliar eye , 2005, Hydrobiologia.

[36]  M. Sutton,et al.  Brood care in a Silurian ostracod , 2007, Proceedings of the Royal Society B: Biological Sciences.

[37]  Alexandros Stamatakis,et al.  Accuracy of morphology-based phylogenetic fossil placement under Maximum Likelihood , 2010, ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010.

[38]  S Blair Hedges,et al.  Molecular clocks do not support the Cambrian explosion. , 2005, Molecular biology and evolution.

[39]  D. Siveter,et al.  Appendages of the arthropod Kunmingella from the early Cambrian of China: Its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda , 1996 .

[40]  D. Walossek The Upper CambrianRehbachiella, its larval development, morphology and significance for the phylogeny of Branchiopoda and Crustacea , 1995, Hydrobiologia.

[41]  James Lyons-Weiler,et al.  Optimal outgroup analysis , 1998 .

[42]  T. Spears,et al.  Crustacean phylogeny inferred from 18S rDNA , 1998 .

[43]  N. Wakayama Embryonic development clarifies polyphyly in ostracod crustaceans , 2007 .

[44]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[45]  Xi-guang Zhang,et al.  An epipodite-bearing crown-group crustacean from the Lower Cambrian , 2007, Nature.

[46]  F. Delsuc,et al.  Phylogenomics: the beginning of incongruence? , 2006, Trends in genetics : TIG.

[47]  D. Siveter,et al.  The earliest ostracods: the geological evidence , 2008 .

[48]  M. Sutton,et al.  An Ostracode Crustacean with Soft Parts from the Lower Silurian , 2003, Science.

[49]  J. Shultz,et al.  Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. , 2004, Molecular phylogenetics and evolution.

[50]  Vermes Testacea,et al.  Crustacean classification : on-going controversies and unresolved problems * , 2007 .

[51]  K. Martens,et al.  Taxonomy, Morphology and Biology of Quaternary and Living Ostracoda , 2013 .

[52]  D. Walossek The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea , 1993, Fossils and Strata.

[53]  J. Høeg,et al.  Lattice organs in y-cyprids of the Facetotecta and their significance in the phylogeny of the Crustacea Thecostraca , 2002 .

[54]  O. Tinn,et al.  Middle Ordovician ostracods from the Lanna and Holen Limestones, south-central Sweden , 2001 .

[55]  J. Sepkoski,et al.  Absolute measures of the completeness of the fossil record , 1999, Nature.

[56]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[57]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[58]  Jeffrey S. Levinton,et al.  Molecular Evidence for Deep Precambrian Divergences Among Metazoan Phyla , 1996, Science.

[59]  M. Pérez‐Losada,et al.  Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches. , 2004, Systematic biology.

[60]  Patrick Kück,et al.  Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees , 2010, Frontiers in Zoology.

[61]  D. Scourfield TWO NEW AND NEARLY COMPLETE SPECIMENS OF YOUNG STAGES OF THE DEVONIAN FOSSIL CRUSTACEAN LEPIDOCARIS RHYNIENSIS. , 1940 .

[62]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[63]  D. Roelofs,et al.  Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers , 2008, BMC Evolutionary Biology.

[64]  A. von Haeseler,et al.  A phylogenomic approach to resolve the arthropod tree of life. , 2010, Molecular biology and evolution.

[65]  K. Müller,et al.  Pentastomid parasites from the Lower Palaeozoic of Sweden , 1994, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[66]  M. Sutton,et al.  An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK , 2010, Proceedings of the Royal Society B: Biological Sciences.

[67]  J. Mallatt,et al.  Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. , 2006, Molecular phylogenetics and evolution.

[68]  Naiara Rodríguez-Ezpeleta,et al.  Detecting and overcoming systematic errors in genome-scale phylogenies. , 2007, Systematic biology.

[69]  N. Butterfield,et al.  Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation , 2012, Proceedings of the National Academy of Sciences.

[70]  C. Babbitt,et al.  Relationships within the Pancrustacea: Examining the influence of additional Malacostracan 18S and 28S rDNA , 2005 .

[71]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[72]  M. Sutton,et al.  Metamorphosis in a Silurian barnacle , 2005, Proceedings of the Royal Society B: Biological Sciences.

[73]  Huaqiao Zhang,et al.  Two new species of Vestrogothia (Phosphatocopina, Crustacea) of Orsten-type preservation from the Upper Cambrian in western Hunan, South China , 2009 .

[74]  P. N. Taylor,et al.  Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods. , 2010, Nature communications.

[75]  D. Penny,et al.  Comment on "Hexapod Origins: Monophyletic or Paraphyletic?" , 2003, Science.

[76]  Todd H. Oakley On Homology of Arthropod Compound Eyes1 , 2003, Integrative and comparative biology.

[77]  Todd H. Oakley,et al.  Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[78]  R. Jenner,et al.  Crustacea and Arthropod Relationships , 2005 .

[79]  J. G. Burleigh,et al.  Prospects for Building the Tree of Life from Large Sequence Databases , 2004, Science.

[80]  N. Strausfeld,et al.  A new view of insect-crustacean relationships I. Inferences from neural cladistics and comparative neuroanatomy. , 2011, Arthropod structure & development.

[81]  T. Burmester,et al.  Hemocyanin suggests a close relationship of Remipedia and Hexapoda. , 2009, Molecular biology and evolution.

[82]  A. Bezděk,et al.  Phylogeny of the Metazoa Based on Morphological and 18S Ribosomal DNA Evidence , 1998, Cladistics : the international journal of the Willi Hennig Society.

[83]  Wolfgang Weitschat Ostracoden (O. Myodocopida) mit Weichkörper-Erhaltung aus der Unter-Trias von Spitzbergen , 1983 .

[84]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[85]  Ørgen Olesen Phylogeny of Branchiopoda (Crustacea) - Character Evolution and Contribution of Uniquely Preserved Fossils , 2009, Arthropod Systematics & Phylogeny.

[86]  K. Müller Crustacea with preserved soft parts from the Upper Cambrian of Sweden , 1983 .

[87]  Ingo Ebersberger,et al.  HaMStR: Profile hidden markov model based search for orthologs in ESTs , 2009, BMC Evolutionary Biology.

[88]  J. Shultz,et al.  Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[89]  David R. Andrew A new view of insect-crustacean relationships II. Inferences from expressed sequence tags and comparisons with neural cladistics. , 2011, Arthropod structure & development.

[90]  P. Štys,et al.  The basic body plan of arthropods: insights from evolutionary morphology and developmental biology , 1997 .

[91]  G. Edgecombe,et al.  Arthropod Fossils and Phylogeny , 1999 .

[92]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[93]  D. Scourfield On a New Type of Crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire)-Lepidocaris rhyniensis, gen. et sp. nov. , 1926 .

[94]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[95]  Jason E Stajich,et al.  Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. , 2008, Systematic biology.

[96]  R. Bate Phosphatized Ostracods from the Cretaceous of Brazil , 1971, Nature.

[97]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[98]  N. Trewin,et al.  An Early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland , 2003 .

[99]  M. Wills,et al.  An arthropod phylogeny based on fossil and recent taxa , 1998 .

[100]  W. Dohle Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea + Hexapoda , 2001 .

[101]  R. J. Smith Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil , 2000 .

[102]  David Posada,et al.  MtArt: a new model of amino acid replacement for Arthropoda. , 2006, Molecular biology and evolution.

[103]  George E. Davis,et al.  An Updated Classification Of The Recent Crustacea , 2001 .

[104]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[105]  S. Morris The Cambrian "explosion": slow-fuse or megatonnage? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Todd H. Oakley,et al.  A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment , 2012, BMC Evolutionary Biology.

[107]  Todd H. Oakley,et al.  Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). , 2008, Molecular phylogenetics and evolution.

[108]  E. Willerslev,et al.  The Origin of Insects , 2006, Science.

[109]  G. Boxshall Crustacean classification: on-going controversies and unresolved problems* , 2007 .

[110]  R. Jenner,et al.  Arthropod phylogeny revisited, with a focus on crustacean relationships. , 2010, Arthropod structure & development.

[111]  D. Grimaldi,et al.  The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). , 2010, Arthropod structure & development.

[112]  I. Ebersberger,et al.  Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. , 2012, Molecular biology and evolution.

[113]  R. Jenner Higher-level crustacean phylogeny: consensus and conflicting hypotheses. , 2010, Arthropod structure & development.

[114]  James M. Carpenter,et al.  The Phylogeny of the Extant Hexapod Orders , 2001, Cladistics : the international journal of the Willi Hennig Society.

[115]  E. Willerslev,et al.  Evolution. The origin of insects. , 2006, Science.

[116]  C. Walcott Middle Cambrian branchiopoda, malacostraca, trilobita, and merostomata, with plates 24 to 34 , 1912 .

[117]  G. Edgecombe,et al.  A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata , 2011, Proceedings of the Royal Society B: Biological Sciences.