An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodiffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. Several numerical examples including biomolecular problems are shown to support our analysis. AMS subject classifications: 65N30, 92C40

[1]  Walter Allegretto,et al.  A Box Scheme for Coupled Systems Resulting from Microsensor Thermistor Problems , 2007 .

[2]  Yiannis N. Kaznessis,et al.  Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore , 2009, PLoS Comput. Biol..

[3]  Nathan A. Baker,et al.  Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. , 2004, Biophysical journal.

[4]  Michael Levitt,et al.  Finite‐difference solution of the Poisson–Boltzmann equation: Complete elimination of self‐energy , 1996, J. Comput. Chem..

[5]  Aihui Zhou,et al.  A finite element recovery approach to Green's function approximations with applications to electrostatic potential computation , 2009 .

[6]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[7]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[8]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[9]  G. Burton Sobolev Spaces , 2013 .

[10]  Joseph W. Jerome,et al.  CONSISTENCY OF SEMICONDUCTOR MODELING: AN EXISTENCE/STABILITY ANALYSIS FOR THE STATIONARY VAN ROOSBROECK SYSTEM* , 1985 .

[11]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[12]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[13]  Michael J. Holst,et al.  The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation , 2007, SIAM J. Numer. Anal..

[14]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[15]  Aihui Zhou,et al.  Two-scale finite element Green’s function approximations with applications to electrostatic potential computation , 2010, J. Syst. Sci. Complex..

[16]  Michael J. Holst,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..

[17]  Nathan A. Baker,et al.  Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. , 2004, Biophysical journal.

[18]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[21]  Benzhuo Lu,et al.  Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. , 2007, The Journal of chemical physics.

[22]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[23]  Aihui Zhou,et al.  Error analysis on bi-parameter finite elements , 1998 .

[24]  Benzhuo Lu,et al.  Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach. , 2008, The journal of physical chemistry. B.

[25]  Charles M. Elliott,et al.  A finite element model for the time-dependent Joule heating problem , 1995 .