List 2-distance $$\varDelta +3$$Δ+3-coloring of planar graphs without 4,5-cycles

Let $$\chi _2(G)$$χ2(G) and $$\chi _2^l(G)$$χ2l(G) be the 2-distance chromatic number and list 2-distance chromatic number of a graph G, respectively. Wegner conjectured that for each planar graph G with maximum degree $$\varDelta $$Δ at least 4, $$\chi _2(G)\le \varDelta +5$$χ2(G)≤Δ+5 if $$4\le \varDelta \le 7$$4≤Δ≤7, and $$\chi _2(G)\le \lfloor \frac{3\varDelta }{2}\rfloor +1$$χ2(G)≤⌊3Δ2⌋+1 if $$\varDelta \ge 8$$Δ≥8. Let G be a planar graph without 4,5-cycles. We show that if $$\varDelta \ge 26$$Δ≥26, then $$\chi _2^l(G)\le \varDelta +3$$χ2l(G)≤Δ+3. There exist planar graphs G with girth $$g(G)=6$$g(G)=6 such that $$\chi _2^l(G)=\varDelta +2$$χ2l(G)=Δ+2 for arbitrarily large $$\varDelta $$Δ. In addition, we also discuss the list L(2, 1)-labeling number of G, and prove that $$\lambda _l(G)\le \varDelta +8$$λl(G)≤Δ+8 for $$\varDelta \ge 27$$Δ≥27.

[1]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[2]  V. Suslov,et al.  Edgeworth equilibrium in a model of interregional economic relations , 2011 .

[3]  Hajo Broersma,et al.  Stars and bunches in planar graphs. Part II: General planar graphs and colourings , 2002 .

[4]  Alexandr V. Kostochka,et al.  Choosability conjectures and multicircuits , 2001, Discret. Math..

[5]  Anna O. Ivanova,et al.  List 2-distance (Δ + 1)-coloring of planar graphs with girth at least 7 , 2011 .

[6]  Wei Chen,et al.  The L(p, q)-labelling of planar graphs without 4-cycles , 2014, Discret. Appl. Math..

[7]  Oleg V. Borodin,et al.  List 2-distance (Δ + 2)-coloring of planar graphs with girth 6 and Δ ≥ 24 , 2009 .

[8]  Bruce A. Reed,et al.  List Colouring Squares of Planar Graphs , 2007, Electron. Notes Discret. Math..

[9]  Ming Chen,et al.  Labeling Planar Graphs without 4, 5-Cycles with a Condition on Distance Two , 2012, SIAM J. Discret. Math..

[10]  Jan van den Heuvel,et al.  Coloring the square of a planar graph , 2003 .

[11]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[12]  Florica Kramer,et al.  A survey on the distance-colouring of graphs , 2008, Discret. Math..

[13]  Daniel Král,et al.  Coloring squares of planar graphs with girth six , 2008, Eur. J. Comb..

[14]  Oleg V. Borodin,et al.  On the total coloring of planar graphs. , 1989 .

[15]  Oleg V. Borodin,et al.  List 2-distance (Delta+2)-coloring of planar graphs with girth six , 2009, Eur. J. Comb..

[16]  Frédéric Havet Choosability of the square of planar subcubic graphs with large girth , 2009, Discret. Math..

[17]  Omid Amini,et al.  A unified approach to distance-two colouring of graphs on surfaces , 2008, Comb..

[18]  Daniel W. Cranston,et al.  List‐Coloring the Squares of Planar Graphs without 4‐Cycles and 5‐Cycles , 2015, J. Graph Theory.

[19]  Daniel Král,et al.  Graph labellings with variable weights, a survey , 2009, Discret. Appl. Math..

[20]  Marthe Bonamy,et al.  Graphs with maximum degree Δ≥17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable , 2014, Discret. Math..