Strong floristic distinctiveness across Neotropical successional forests

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.

Susan G. Letcher | W. Silver | J. Zimmerman | P. Hietz | P. Balvanera | F. França | M. Uriarte | E. Broadbent | A. Zambrano | P. Brancalion | J. Barlow | E. Berenguer | J. Chave | E. Ortiz-Malavassi | F. Bongers | L. Poorter | R. Chazdon | Susana Rodríguez‐Buriticá | T. Aide | B. Finegan | Jefferson S. Hall | D. Kennard | G. Fernandes | P. Villa | S. V. Martins | Y. Nunes | J. Ferreira | J. Dupuy | J. Hernández‐Stefanoni | I. Vieira | A. Siminski | A. Fantini | D. Piotto | M. Tabarelli | J. Engel | P. Pétronelli | D. Craven | D. Dent | E. Lebrija‐Trejos | J. Meave | E. A. Pérez-García | C. Jakovac | E. Marín-Spiotta | M. Peña-Claros | S. Müller | M.A. Romero-Romero | Rita Mesquita | Esteban Álvarez-Dávila | M. van Breugel | M. Martínez‐Ramos | J. Becknell | Mário M. Espírito-Santo | S. Ochoa-Gaona | Natalia Norden | D. Rozendaal | George A. L. Cabral | Ben H. J. de Jong | S. DeWalt | Sandra M. Durán | R. César | A. B. Junqueira | Madelon Lohbeck | Paulo E. S. Massoca | F. Mora | R. Muñoz | J. Rodríguez-Velázquez | Jorge Ruíz | N. Schwartz | Hans van der Wal | Maria D. M. Veloso | T. V. Bentos | R. Ostertag | G. Derroire | F. Elias | F. Melo | Bráulio A. Santos | W. Thomas | G. Colletta | Felipe P. L. Melo | H. Vester | Alvaro Idárraga | Masha T. van der Sande | Hernando García | Jaider Jiménez-Montoya | K. Zanini | René López‐Camacho | H. Teixeira | Diego Delgado | G. Williamson | José Aguilar-Cano | Alice C Rodrigues | Alma Hernández-Jaramillo | B. Pinho | Carolina Castellano-Castro | D. C. Zambiazi | Daniel Hernán García | Everardo Valadares de Sá Sampaio | F. Oberleitner | Jarcilene S. de Almeida-Cortez | Jhon Edison Nieto | Nathalia Pérez-Cárdenas | N. González-Valdivia | Vanessa de S Moreno | Vanessa Granda | M. Espírito-Santo | Esteban Alvarez-Davila | Edwin Lebrija‐Trejos | H. van der Wal | H. M. Teixeira | Michiel van Breugel | S. Durán | Jefferson S. Hall | E. A. PÉREZ-GARCÍA | Álvaro Idarraga | R. Muñoz | Wayt Thomas

[1]  A. Antonelli,et al.  The Andes through time: evolution and distribution of Andean floras. , 2022, Trends in plant science.

[2]  A. Casas,et al.  The Taming of Psidium guajava: Natural and Cultural History of a Neotropical Fruit , 2021, Frontiers in Plant Science.

[3]  N. Pitman,et al.  The contribution of environmental and dispersal filters on phylogenetic and taxonomic beta diversity patterns in Amazonian tree communities , 2021, Oecologia.

[4]  Nathan J B Kraft,et al.  Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities , 2021 .

[5]  M. Simon,et al.  Environmental variables and dispersal barriers explain broad‐scale variation in tree species composition across Neotropical non‐flooded evergreen forests , 2021 .

[6]  E. C. Ellis,et al.  People have shaped most of terrestrial nature for at least 12,000 years , 2021, Proceedings of the National Academy of Sciences.

[7]  M. Bueno,et al.  On the floristic identity of Amazonian vegetation types , 2021, Biotropica.

[8]  C. Peres,et al.  Winner-Loser Species Replacements in Human-Modified Landscapes. , 2021, Trends in ecology & evolution.

[9]  M. Simon,et al.  Patterns of variation in tree composition and richness in Neotropical Non‐Flooded Evergreen Forests , 2020 .

[10]  P. Brancalion,et al.  Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration , 2020 .

[11]  Nandin-Erdene Tsendbazar,et al.  Copernicus Global Land Cover Layers - Collection 2 , 2020, Remote. Sens..

[12]  L. Ferreira,et al.  Evolutionary diversity in tropical tree communities peaks at intermediate precipitation , 2020, Scientific Reports.

[13]  M. Uriarte,et al.  Reversals of Reforestation Across Latin America Limit Climate Mitigation Potential of Tropical Forests , 2019, Frontiers in Forests and Global Change.

[14]  T. Baker,et al.  Freezing and water availability structure the evolutionary diversity of trees across the Americas , 2019, Science Advances.

[15]  B. Salgado‐Negret,et al.  Little trace of floristic homogenization in peri‐urban Andean secondary forests despite high anthropogenic transformation , 2019, Journal of Ecology.

[16]  Susan G. Letcher,et al.  Biodiversity recovery of Neotropical secondary forests , 2019, Science Advances.

[17]  S. Lewis,et al.  Earth system impacts of the European arrival and Great Dying in the Americas after 1492 , 2019, Quaternary Science Reviews.

[18]  H. Tuomisto,et al.  The importance of soils in predicting the future of plant habitat suitability in a tropical forest , 2019, Plant and Soil.

[19]  Christina M. Kennedy,et al.  Managing the middle: A shift in conservation priorities based on the global human modification gradient , 2019, Global change biology.

[20]  M. Cadotte,et al.  Testing Darwin's transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). , 2018, Ecology letters.

[21]  M. Bueno,et al.  Inserting Tropical Dry Forests Into the Discussion on Biome Transitions in the Tropics , 2018, Front. Ecol. Evol..

[22]  L. Lohmann,et al.  Importance of dispersal in the assembly of the Neotropical biota , 2018, Proceedings of the National Academy of Sciences.

[23]  Daniele Silvestro,et al.  Amazonia is the primary source of Neotropical biodiversity , 2018, Proceedings of the National Academy of Sciences.

[24]  A. F. Souza,et al.  Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America , 2018, PloS one.

[25]  Kalle Ruokolainen,et al.  Phylogenetic classification of the world’s tropical forests , 2018, Proceedings of the National Academy of Sciences.

[26]  Nunzio Knerr,et al.  A comparison of network and clustering methods to detect biogeographical regions , 2018 .

[27]  W. D. Stevens,et al.  Amazon plant diversity revealed by a taxonomically verified species list , 2017, Proceedings of the National Academy of Sciences.

[28]  G. Colli,et al.  The historical connections between the Amazon and the Atlantic Forest revisited , 2017 .

[29]  Kyle G. Dexter,et al.  Seasonal drought limits tree species across the Neotropics , 2017 .

[30]  A. Antonelli,et al.  Biogeography: Drivers of bioregionalization , 2017, Nature Ecology &Evolution.

[31]  F. Mazel,et al.  Global determinants of zoogeographical boundaries , 2017, Nature Ecology &Evolution.

[32]  A Alonso,et al.  Persistent effects of pre-Columbian plant domestication on Amazonian forest composition , 2017, Science.

[33]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[34]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[35]  Gregory P. Asner,et al.  Environmental drivers of tree community turnover in western Amazonian forests , 2016 .

[36]  J. Franklin,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016, Science.

[37]  Kendall R. Jones,et al.  Global terrestrial Human Footprint maps for 1993 and 2009 , 2016, Scientific Data.

[38]  F. Bongers,et al.  Land use as a filter for species composition in Amazonian secondary forests , 2016 .

[39]  Susan G. Letcher,et al.  Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics , 2016, Science Advances.

[40]  M. Curran,et al.  Which landscape size best predicts the influence of forest cover on restoration success? A global meta‐analysis on the scale of effect , 2016 .

[41]  J. Barlow,et al.  How pervasive is biotic homogenization in human-modified tropical forest landscapes? , 2015, Ecology letters.

[42]  Susan G. Letcher,et al.  Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites , 2015 .

[43]  G. B. Williamson,et al.  Successional dynamics in Neotropical forests are as uncertain as they are predictable , 2015, Proceedings of the National Academy of Sciences.

[44]  Peter Löwenberg-Neto,et al.  Neotropical region: a shapefile of Morrone's (2014) biogeographical regionalisation. , 2014, Zootaxa.

[45]  J. Morrone Biogeographical regionalisation of the Neotropical region. , 2014, Zootaxa.

[46]  R. Pennington,et al.  Stability structures tropical woody plant diversity more than seasonality: Insights into the ecology of high legume-succulent-plant biodiversity , 2013 .

[47]  R. Vilà,et al.  recluster: an unbiased clustering procedure for beta‐diversity turnover , 2013 .

[48]  Susanne A. Fritz,et al.  An Update of Wallace’s Zoogeographic Regions of the World , 2013, Science.

[49]  A. Antonelli,et al.  Neotropical Plant Evolution: Assembling the Big Picture , 2013 .

[50]  C. Peres,et al.  The 'few winners and many losers' paradigm revisited: Emerging prospects for tropical forest biodiversity , 2012 .

[51]  B. R. Ramesh,et al.  Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism , 2012 .

[52]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[53]  M. Ashton,et al.  Restoration of dry tropical forests in Central America: A review of pattern and process , 2011 .

[54]  Jean-Michel Poggi,et al.  Variable selection using random forests , 2010, Pattern Recognit. Lett..

[55]  Erle C. Ellis,et al.  Anthropogenic transformation of the biomes, 1700 to 2000 , 2010 .

[56]  A. Chao,et al.  Resilience of tropical rain forests: tree community reassembly in secondary forests. , 2009, Ecology letters.

[57]  J. Barlow,et al.  Fire-mediated dieback and compositional cascade in an Amazonian forest , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[58]  M. Tabarelli,et al.  Biogeographical relationships among tropical forests in north‐eastern Brazil , 2007 .

[59]  P. Legendre,et al.  FACTORS AFFECTING COMMUNITY COMPOSITION OF FOREST REGENERATION IN DEFORESTED, ABANDONED LAND IN PANAMA , 2004 .

[60]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[61]  J. Meave,et al.  Biogeographical analysis of the tree flora of the Yucatan Peninsula , 2002 .

[62]  C. C. Berg,et al.  Distributional patterns of cecropia (Cecropiaceae): a panbiogeographic analysis , 1997 .

[63]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[64]  Joel s. Brown,et al.  The Selective Interactions of Dispersal, Dormancy, and Seed Size as Adaptations for Reducing Risk in Variable Environments , 1988, The American Naturalist.

[65]  A. Gentry,et al.  Neotropical Floristic Diversity: Phytogeographical Connections Between Central and South America, Pleistocene Climatic Fluctuations, or an Accident of the Andean Orogeny? , 1982 .