Small mass asymptotic for the motion with vanishing friction

[1]  Mark Freidlin,et al.  On the Neumann problem for PDE’s with a small parameter and the corresponding diffusion processes , 2012 .

[2]  Wenqing Hu,et al.  Smoluchowski–Kramers approximation in the case of variable friction , 2011, 1203.0603.

[3]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[4]  M. Freidlin Some Remarks on the Smoluchowski–Kramers Approximation , 2004 .

[5]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[6]  William Feller,et al.  Generalized second order differential operators and their lateral conditions , 1957 .

[7]  Mark Freidlin,et al.  Random perturbations of Hamiltonian systems , 1994 .

[8]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[9]  Jim Pitman,et al.  On Walsh's Brownian motions , 1989 .

[10]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[11]  S. Molchanov,et al.  Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .

[12]  P. Mandl Analytical treatment of one-dimensional Markov processes , 1968 .

[13]  S. Molchanov On a Problem in the Theory of Diffusion Processes , 1964 .

[14]  T. Ueno The diffusion satisfying Wentzell's boundary condition and the Markov process on the boundary, II , 1960 .

[15]  A. D. Venttsel On Boundary Conditions For Multidimensional Diffusion Processes , 1959 .

[16]  E. Dynkin One-Dimensional Continuous Strong Markov Processes , 1959 .

[17]  Ueno,et al.  The Diffusion SatisIying Wentzell’s Boundary Condition and the Markov Process on the Boundary. I , 2022 .