Stable and realistic crack pattern generation using a cracking node method

This paper presents a method for simulating surface crack patterns appearing in ceramic glaze, glass, wood and mud. It uses a physically and heuristically combined method to model this type of crack pattern. A stress field is defined heuristically over the triangle mesh of an object. Then, a first-order quasi-static cracking node method (CNM) is used to model deformation. A novel combined stress and energy combined crack criterion is employed to address crack initiation and propagation separately according to physics. Meanwhile, a highest-stress-first rule is applied in crack initiation, and a breadth-first rule is applied in crack propagation. Finally, a local stress relaxation step is employed to evolve the stress field and avoid shattering artifacts. Other related issues are also discussed, such as the elimination of quadrature sub-cells, the prevention of parallel cracks and spurious crack procession. Using this method, a variety of crack patterns observed in the real world can be reproduced by changing a set of parameters. Consequently, our method is robust because the computational mesh is independent of dynamic cracks and has no sliver elements. We evaluate the realism of our results by comparing them with photographs of real-world examples. Further, we demonstrate the controllability of our method by varying different parameters.

[1]  Chenfanfu Jiang,et al.  An adaptive virtual node algorithm with robust mesh cutting , 2014, SCA '14.

[2]  Koichi Hirota,et al.  Generation of crack patterns with a physical model , 1998, The Visual Computer.

[3]  Ahmad H. Nasri,et al.  Mesh cutting during real-time physical simulation , 2011, Comput. Aided Des..

[4]  Brian Wyvill,et al.  Robust iso-surface tracking for interactive character skinning , 2014, ACM Trans. Graph..

[5]  Szymon Rusinkiewicz,et al.  Estimating curvatures and their derivatives on triangle meshes , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[6]  Thomas Seelig,et al.  Fracture Mechanics: With an Introduction to Micromechanics , 2006 .

[7]  Laurent Lucas,et al.  A Dynamic Model of Cracks Development Based on a 3D Discrete Shrinkage Volume Propagation , 2008, Comput. Graph. Forum.

[8]  Maud Marchal,et al.  Real-Time Simulation of Brittle Fracture Using Modal Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Jan Bender,et al.  Adaptive tetrahedral meshes for brittle fracture simulation , 2014, SCA '14.

[10]  Brian Wyvill,et al.  Rendering cracks in Batik , 2004, NPAR '04.

[11]  Sylvain Lefebvre,et al.  State of the Art in Example-based Texture Synthesis , 2009, Eurographics.

[12]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[13]  Hiroshi Nagahashi,et al.  Elastic moduli of simple mass spring models , 2015, The Visual Computer.

[14]  Loeïz Glondu,et al.  Physically-based and Real-time Simulation of Brittle Fracture for Interactive Applications. (Simulation de Fracture d'Objets Fragiles basée Physique et en Temps-Réel Pour les Applications Interactives) , 2012 .

[15]  Huamin Wang,et al.  Adaptive fracture simulation of multi-layered thin plates , 2013, ACM Trans. Graph..

[16]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[17]  Jun Wu,et al.  A Survey of Physically Based Simulation of Cuts in Deformable Bodies , 2015, Comput. Graph. Forum.

[18]  Omar Hesham,et al.  Fast Meshless Simulation of Anisotropic Tearing in Elastic Solids , 2012 .

[19]  Koichi Hirota,et al.  Simulation of three-dimensional cracks , 2000, The Visual Computer.

[20]  James F. O'Brien,et al.  Adaptive tearing and cracking of thin sheets , 2014, ACM Trans. Graph..

[21]  Kuanjun Fang,et al.  An improved algorithm for simulating wax-printing patterns , 2011 .

[22]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[23]  Di Chen,et al.  Computer simulation of batik printing patterns with cracks , 2015 .

[24]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[25]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[26]  Carles Bosch,et al.  Fracture modeling in computer graphics , 2014, Comput. Graph..

[27]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[28]  Robert Bacon,et al.  Animation of fracture by physical modeling , 1991, The Visual Computer.

[29]  Miguel A. Otaduy,et al.  Fracture animation based on high-dimensional Voronoi diagrams , 2014, I3D.

[30]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[31]  宮川翔貴 ”Fast Simulation of Mass‐Spring Systems”の研究報告 , 2016 .

[32]  Guoping Wang,et al.  Meshless simulation of brittle fracture , 2011, Comput. Animat. Virtual Worlds.

[33]  George M. Turkiyyah,et al.  A physically-based framework for real-time haptic cutting and interaction with 3D continuum models , 2007, Symposium on Solid and Physical Modeling.

[34]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[35]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[36]  Eitan Grinspun,et al.  Enrichment textures for detailed cutting of shells , 2009, ACM Trans. Graph..

[37]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[38]  Ted Belytschko,et al.  Cracking node method for dynamic fracture with finite elements , 2009 .

[39]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[40]  Baining Guo,et al.  Context-aware textures , 2007, TOGS.

[41]  Przemyslaw Prusinkiewicz,et al.  Modeling fracture formation on growing surfaces , 2003 .

[42]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[43]  Christopher Wojtan,et al.  High-resolution brittle fracture simulation with boundary elements , 2015, ACM Trans. Graph..

[44]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[45]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[46]  Robert Bridson,et al.  Simulating rigid body fracture with surface meshes , 2015, ACM Trans. Graph..

[47]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[48]  T. Rabczuk Computational Methods for Fracture in Brittle and Quasi-Brittle Solids: State-of-the-Art Review and Future Perspectives , 2013 .

[49]  Gábor Székely,et al.  Identification of Spring Parameters for Deformable Object Simulation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[50]  Y. Fung A first course in continuum mechanics , 1969 .

[51]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[52]  Murat Cenk Cavusoglu,et al.  Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects , 2010, Graph. Model..

[53]  Song Chao,et al.  Simulation for Cutting Deformable Model Based on X-FEM , 2010, 2010 International Conference on Intelligent Computing and Cognitive Informatics.

[54]  Hong Qin,et al.  Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials , 2015, The Visual Computer.

[55]  Norishige Chiba,et al.  Crack pattern simulation based on 3D surface cellular automata , 2000, The Visual Computer.

[56]  Lenka Jerábková,et al.  Stable Cutting of Deformable Objects in Virtual Environments Using XFEM , 2009, IEEE Computer Graphics and Applications.

[57]  Saty Raghavachary,et al.  Fracture generation on polygonal meshes using Voronoi polygons , 2002, SIGGRAPH '02.

[58]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[59]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[60]  George Turkiyyah,et al.  Mesh cutting during real-time physical simulation , 2009, Comput. Aided Des..

[61]  Norishige Chiba,et al.  Simulation of peeling using 3D-surface cellular automata , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[62]  James F. O'Brien,et al.  Generating surface crack patterns , 2006, SCA '06.

[63]  Nuttapong Chentanez,et al.  Real time dynamic fracture with volumetric approximate convex decompositions , 2013, ACM Trans. Graph..

[64]  Joshua A. Levine,et al.  A peridynamic perspective on spring-mass fracture , 2014, SCA '14.

[65]  Samir Akkouche,et al.  Procedural modeling of cracks and fractures , 2004, Proceedings Shape Modeling Applications, 2004..

[66]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[67]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[68]  Onyango Nelson Owuor,et al.  Optimal Vaccination Strategies in an SIR Epidemic Model with Time Scales , 2013 .

[69]  Pierre Poulin,et al.  The Simulation of Paint Cracking and Peeling , 2002, Graphics Interface.

[70]  Wen-Kai Tai,et al.  A Straightforward and Intuitive Approach on Generation and Display of Crack-Like Patterns on 3D Objects , 2006, Computer Graphics International.