Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization

A common challenge in systems biology is quantifying the effects of unknown parameters and estimating parameter values from data. For many systems, this task is computationally intractable due to expensive model evaluations and large numbers of parameters. In this work, we investigate a new method for performing sensitivity analysis and parameter estimation of complex biological models using techniques from uncertainty quantification. The primary advance is a significant improvement in computational efficiency from the replacement of model simulation by evaluation of a polynomial surrogate model. We demonstrate the method on two models of mating in budding yeast: a smaller ODE model of the heterotrimeric G-protein cycle, and a larger spatial model of pheromone-induced cell polarization. A small number of model simulations are used to fit the polynomial surrogates, which are then used to calculate global parameter sensitivities. The surrogate models also allow rapid Bayesian inference of the parameters via Markov chain Monte Carlo (MCMC) by eliminating model simulations at each step. Application to the ODE model shows results consistent with published single-point estimates for the model and data, with the added benefit of calculating the correlations between pairs of parameters. On the larger PDE model, the surrogate models allowed convergence for the distribution of 15 parameters, which otherwise would have been computationally prohibitive using simulations at each MCMC step. We inferred parameter distributions that in certain cases peaked at values different from published values, and showed that a wide range of parameters would permit polarization in the model. Strikingly our results suggested different diffusion constants for active versus inactive Cdc42 to achieve good polarization, which is consistent with experimental observations in another yeast species S. pombe.

[1]  Tom Misteli,et al.  Computational Cell Biology , 2018, Methods in Molecular Biology.

[2]  Song Li,et al.  Powered embarrassing parallel MCMC sampling in Bayesian inference, a weighted average intuition , 2017, Comput. Stat. Data Anal..

[3]  John B. Wallingford,et al.  Planar cell polarity in development and disease , 2017, Nature Reviews Molecular Cell Biology.

[4]  Liang Yan,et al.  Sparse Approximation using ℓ1-ℓ2 Minimization and Its Application to Stochastic Collocation , 2017, SIAM J. Sci. Comput..

[5]  Richard Bonneau,et al.  Biophysically motivated regulatory network inference: progress and prospects , 2016, bioRxiv.

[6]  Yike Guo,et al.  Parameter estimation for gene regulatory networks: A two-stage MCMC Bayesian approach , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[7]  W. Andrew Pruett,et al.  The Creation of Surrogate Models for Fast Estimation of Complex Model Outcomes , 2016, PloS one.

[8]  Dongbin Xiu,et al.  Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression , 2016, SIAM J. Sci. Comput..

[9]  Jukka Corander,et al.  Orthogonal parallel MCMC methods for sampling and optimization , 2015, Digit. Signal Process..

[10]  Avner Friedman,et al.  Introduction to Mathematical Biology , 2016 .

[11]  Connecting Local and Global Sensitivities in a Mathematical Model for Wound Healing , 2015, Bulletin of mathematical biology.

[12]  Sophie G. Martin,et al.  Spontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking , 2015, PLoS biology.

[13]  Michael P H Stumpf,et al.  Topological sensitivity analysis for systems biology , 2014, Proceedings of the National Academy of Sciences.

[14]  Albert Folch,et al.  Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range , 2014, Proceedings of the National Academy of Sciences.

[15]  Yohei Murakami,et al.  Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology , 2014, PloS one.

[16]  Sophie G. Martin,et al.  Cell polarization in budding and fission yeasts. , 2014, FEMS microbiology reviews.

[17]  Sarah Filippi,et al.  A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation , 2014, Nature Protocols.

[18]  Marco A. Iglesias,et al.  Inverse Problems and Uncertainty Quantification , 2014 .

[19]  Daniel M. Tartakovsky,et al.  Information theoretic approach to complex biological network reconstruction: application to cytokine release in RAW 264.7 macrophages , 2014, BMC Systems Biology.

[20]  Brian Drawert,et al.  Spatial Stochastic Dynamics Enable Robust Cell Polarization , 2013, PLoS Comput. Biol..

[21]  Heikki Haario,et al.  Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .

[22]  M. Perez-Moreno,et al.  Epithelial cell polarity, stem cells and cancer , 2011, Nature Reviews Cancer.

[23]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[24]  Yufei Huang,et al.  Bayesian parameter estimation for nonlinear modelling of biological pathways , 2011, BMC Systems Biology.

[25]  Qing Nie,et al.  Noise filtering tradeoffs in spatial gradient sensing and cell polarization response , 2011, BMC Systems Biology.

[26]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[27]  Z Zi,et al.  Sensitivity analysis approaches applied to systems biology models. , 2011, IET systems biology.

[28]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[29]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[30]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[31]  Douglas E. Jones,et al.  Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection. , 2010, Journal of theoretical biology.

[32]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[33]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..

[34]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[35]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[36]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[37]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[38]  Johannes Jaeger,et al.  Parameter estimation and determinability analysis applied to Drosophila gap gene circuits , 2008, BMC Systems Biology.

[39]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[40]  Qing Nie,et al.  Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients , 2008, PloS one.

[41]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[42]  Valeri Vasioukhin,et al.  Cell polarity and cancer – cell and tissue polarity as a non-canonical tumor suppressor , 2008, Journal of Cell Science.

[43]  A. Jayaraman,et al.  Parameter sensitivity analysis of IL-6 signalling pathways. , 2007, IET systems biology.

[44]  Peter W. Zandstra,et al.  Sensitivity Analysis of Intracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control , 2007, PLoS Comput. Biol..

[45]  A. Saltelli,et al.  The role of sensitivity analysis in ecological modelling , 2007 .

[46]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[47]  E. Bi,et al.  Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond , 2007, Microbiology and Molecular Biology Reviews.

[48]  Qing Nie,et al.  Modeling Yeast Cell Polarization Induced by Pheromone Gradients , 2007 .

[49]  Darren J. Wilkinson,et al.  Bayesian methods in bioinformatics and computational systems biology , 2006, Briefings Bioinform..

[50]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[51]  W. R. Howard The Nature of Mathematical Modeling , 2006 .

[52]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[53]  H T Banks,et al.  A parameter sensitivity methodology in the context of HIV delay equation models , 2005, Journal of mathematical biology.

[54]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[55]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[56]  J. Becker,et al.  A fluorescent alpha-factor analogue exhibits multiple steps on binding to its G protein coupled receptor in yeast. , 2004, Biochemistry.

[57]  Kwang-Hyun Cho,et al.  Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway , 2003, Simul..

[58]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[59]  H. Kitano,et al.  A quantitative characterization of the yeast heterotrimeric G protein cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[61]  Leslie M Loew,et al.  Computational cell biology: spatiotemporal simulation of cellular events. , 2002, Annual review of biophysics and biomolecular structure.

[62]  J. Thorner,et al.  Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. , 2001, Annual review of biochemistry.

[63]  Petar M. Djuric,et al.  Model selection by MCMC computation , 2001, Signal Process..

[64]  A. Bretscher,et al.  Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. , 2000, Journal of cell science.

[65]  Sally Rosenthal,et al.  Parallel computing and Monte Carlo algorithms , 1999 .

[66]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[67]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[68]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[69]  Hadi Dowlatabadi,et al.  Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example , 1994 .

[70]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[71]  Frank McCormick,et al.  The GTPase superfamily: a conserved switch for diverse cell functions , 1990, Nature.

[72]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[73]  James F. Epperson On the Runge example , 1987 .

[74]  G. Sprague,,et al.  Yeast peptide pheromones, a-factor and α-factor, activate a common response mechanism in their target cells , 1986, Cell.

[75]  D. Jenness,et al.  Down regulation of the α-factor pheromone receptor in S. cerevisiae , 1986, Cell.

[76]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[77]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .