Quantum key distribution with entangled photons generated on demand by a quantum dot

Quantum key distribution---exchanging a random secret key relying on a quantum mechanical resource---is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multi-photon emission, the latter feature countering some of the best eavesdropping attacks. Here we first employ a quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250 meter long single mode fiber and in free-space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.

[1]  Yasuhiko Arakawa,et al.  Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors , 2015, Scientific Reports.

[2]  A. Lemaître,et al.  Optically controlling the emission chirality of microlasers , 2019, Nature Photonics.

[3]  Michael Siegel,et al.  Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor-Superconductor Platform. , 2018, Nano letters.

[4]  G. Weihs,et al.  Deterministic photon pairs and coherent optical control of a single quantum dot. , 2012, Physical review letters.

[5]  Umesh V. Vazirani,et al.  Fully device independent quantum key distribution , 2012, Commun. ACM.

[6]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[7]  Tobias Heindel,et al.  A stand-alone fiber-coupled single-photon source , 2017, Scientific Reports.

[8]  Shihan Sajeed,et al.  Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch , 2015, 1502.02785.

[9]  S. Reitzenstein,et al.  Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings. , 2019, Optics express.

[10]  Christian Schneider,et al.  Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range , 2012 .

[11]  Kyo Inoue,et al.  Secure communication: Quantum cryptography with a photon turnstile , 2002, Nature.

[12]  O. Schmidt,et al.  An artificial Rb atom in a semiconductor with lifetime-limited linewidth , 2015, 1508.06461.

[13]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[14]  Luca Trevisan,et al.  Extractors and pseudorandom generators , 2001, JACM.

[15]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[16]  A. Badolato,et al.  Bright Single-Photon Emission From a Quantum Dot in a Circular Bragg Grating Microcavity , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  M. Dušek,et al.  Generalized beam-splitting attack in quantum cryptography with dim coherent states , 1999 .

[18]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.

[19]  C. Becher,et al.  Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. , 2016, Optics express.

[20]  Ming-Cheng Chen,et al.  Towards optimal single-photon sources from polarized microcavities , 2019, Nature Photonics.

[21]  R. Gross,et al.  On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors , 2013, Scientific reports.

[22]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[23]  N. Gisin,et al.  Experimental methods for detecting entanglement. , 2005, Physical review letters.

[24]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[25]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[26]  D. Ritchie,et al.  Quantum key distribution with an entangled light emitting diode , 2015 .

[27]  Lilian Bossuet,et al.  Key Reconciliation Protocols for Error Correction of Silicon PUF Responses , 2017, IEEE Transactions on Information Forensics and Security.

[28]  R. Trotta,et al.  Entanglement Teleportation With Photons From Quantum Dots: Toward a Solid-State Based Quantum Network , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Christoph Simon,et al.  Practical quantum repeaters with parametric down-conversion sources , 2015, 1505.03470.

[30]  Siyuan Yu,et al.  Orbital angular momentum vertical-cavity surface-emitting lasers , 2015 .

[31]  Tobias Heindel,et al.  Tools for the performance optimization of single-photon quantum key distribution , 2019 .

[32]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[33]  Oliver Benson,et al.  Separating cascaded photons from a single quantum dot : Demonstration of multiplexed quantum cryptography , 2004 .

[34]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[35]  I. Daruka,et al.  Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. , 2014, Physical review letters.

[36]  Anindya De,et al.  Trevisan's Extractor in the Presence of Quantum Side Information , 2009, SIAM J. Comput..

[37]  Christian Schneider,et al.  Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment , 2014 .

[38]  Lei Deng,et al.  Entanglement-based secure quantum cryptography over 1,120 kilometres , 2020, Nature.

[39]  R. C. Macridis A review , 1963 .

[40]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[41]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[42]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[43]  D. Szabra,et al.  Analysis of Free-Space Optics Development , 2017 .

[44]  Yoshihisa Yamamoto,et al.  Security aspects of quantum key distribution with sub-Poisson light , 2002 .

[45]  Jake Iles-Smith,et al.  A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability , 2019, Nature Nanotechnology.

[46]  Juntao Li,et al.  On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface , 2020, Science Advances.

[47]  Dan Dalacu,et al.  Controlled integration of selected detectors and emitters in photonic integrated circuits. , 2019, Optics express.

[48]  J. Martín-Sánchez,et al.  Wavelength-tunable sources of entangled photons interfaced with atomic vapours , 2016, Nature Communications.

[49]  S. Massar,et al.  Efficient quantum key distribution secure against no-signalling eavesdroppers , 2006, quant-ph/0605246.

[50]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[51]  Wolfgang Mauerer,et al.  A modular framework for randomness extraction based on Trevisan's construction , 2012, ArXiv.

[52]  S. F. Covre da Silva,et al.  Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. , 2018, Physical review letters.

[53]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[54]  Masahide Sasaki,et al.  Full analysis of multi-photon pair effects in spontaneous parametric down conversion based photonic quantum information processing , 2014, 1410.3627.

[55]  Farinaz Koushanfar,et al.  A Unified Framework for Multimodal Submodular Integrated Circuits Trojan Detection , 2011, IEEE Transactions on Information Forensics and Security.

[56]  Y. Ota,et al.  Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. , 2018, Optics express.

[57]  A. Zeilinger,et al.  Long-Distance Free-Space Distribution of Quantum Entanglement , 2003, Science.

[58]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[59]  P. Grangier,et al.  Experimental open-air quantum key distribution with a single-photon source , 2004, quant-ph/0402110.

[60]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[61]  P. J. Clarke,et al.  Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source , 2010, 1004.4754.

[62]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[63]  S. F. Covre da Silva,et al.  Entanglement Swapping with Photons Generated on Demand by a Quantum Dot. , 2019, Physical review letters.

[64]  H. Lo,et al.  Quantum key distribution with entangled photon sources , 2007, quant-ph/0703122.