Stabilizing a magnetic vortex/antivortex array in single crystalline Fe/Ag(001) microstructures

While a magnetic antivortex state can be created in ring structures, much effort has been devoted to stabilizing a magnetic antivortex as the ground state in a single island. Among many proposals, less attention has been paid to the role of magnetocrystalline anisotropy because most magnetic microstructures are made of polycrystalline materials. By patterning epitaxial Fe/Ag(001) films along different in-plane directions, we show that the Fe magnetocrystalline anisotropy plays a very important role in stabilizing different types of vortex/antivortex states. In particular, we find that an Fe island in the shape of an elongated hexagon favors vortex array formation when the long edge is parallel to the Fe easy magnetization axis, and favors the vortex-antivortex array formation when the long edge is parallel to the Fe hard magnetization axis.

[1]  V. Novosad,et al.  Dynamic decay of a single vortex into vortex-antivortex pairs , 2014 .

[2]  Y. Gaididei,et al.  Periodic magnetic structures generated by spin–polarized currents in nanostripes , 2013, 1306.6296.

[3]  T. Kitamura,et al.  Effect of strain on the evolution of magnetic multi-vortices in ferromagnetic nano-platelets , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  P. Fischer,et al.  Dynamic switching of the spin circulation in tapered magnetic nanodisks. , 2013, Nature nanotechnology.

[5]  K. Buchanan,et al.  Magnetic antivortex formation in pound-key-like nanostructures , 2013 .

[6]  T. Matsuyama,et al.  Inductive detection of magnetic vortex gyration , 2013 .

[7]  F. García-Sánchez,et al.  Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes , 2012 .

[8]  M. Martens,et al.  Reliable nucleation of isolated magnetic antivortices , 2012 .

[9]  T. Tyliszczak,et al.  Magnetic antivortex-core reversal by circular-rotational spin currents. , 2010, Physical review letters.

[10]  V. Cros,et al.  Phase-locking of magnetic vortices mediated by antivortices. , 2009, Nature nanotechnology.

[11]  Lars Bocklage,et al.  Current- and field-driven magnetic antivortices for nonvolatile data storage , 2009 .

[12]  T. Tyliszczak,et al.  X-ray imaging of the dynamic magnetic vortex core deformation , 2008, 0811.1348.

[13]  Mathias Kläui,et al.  Head-to-head domain walls in magnetic nanostructures , 2008 .

[14]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[15]  Geoffrey S. D. Beach,et al.  Current-induced domain wall motion , 2008 .

[16]  R. Hertel,et al.  Ultrafast dynamics of a magnetic antivortex: Micromagnetic simulations , 2008, 0802.0093.

[17]  Benjamin Krueger,et al.  Vortices and antivortices as harmonic oscillators , 2008 .

[18]  K. Guslienko,et al.  Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes , 2007 .

[19]  J. Raabe,et al.  Dynamic vortex-antivortex interaction in a single cross-tie wall. , 2007, Physical review letters.

[20]  G. Faini,et al.  Detection of current-induced resonance of geometrically confined domain walls. , 2007, Physical review letters.

[21]  D. Clarke,et al.  Dynamics of domain walls in magnetic nanostrips. , 2007, Physical review letters.

[22]  Y. Nakatani,et al.  Electrical switching of the vortex core in a magnetic disk. , 2007, Nature materials.

[23]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[24]  O. Tchernyshyov,et al.  Vortices in thin ferromagnetic films and the skyrmion number , 2006, cond-mat/0611392.

[25]  R. Hertel,et al.  Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. , 2006, Physical review letters.

[26]  C. Rettner,et al.  Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. , 2006, Physical review letters.

[27]  V. Novosad,et al.  Soliton-pair dynamics in patterned ferromagnetic ellipses , 2005, cond-mat/0602509.

[28]  H. Youk,et al.  Topological defects in flat nanomagnets: The magnetostatic limit , 2005, cond-mat/0508740.

[29]  G. Chern,et al.  Fractional vortices and composite domain walls in flat nanomagnets. , 2005, Physical review letters.

[30]  F. Peeters,et al.  Geometry and magnetic-field-induced vortices and antivortices in mesoscopic two-dimensional systems , 2005 .

[31]  Dongqi Li,et al.  Magnetic bistability of Co nanodots. , 2005, Physical review letters.

[32]  W Wernsdorfer,et al.  Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. , 2005, Physical review letters.

[33]  Eiji Saitoh,et al.  Current-induced resonance and mass determination of a single magnetic domain wall , 2004, Nature.

[34]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[35]  A. Scholl,et al.  Vortex Core-Driven Magnetization Dynamics , 2004, Science.

[36]  G. Tatara,et al.  Theory of current-driven domain wall motion: spin transfer versus momentum transfer. , 2004, Physical review letters.

[37]  S. Nasu,et al.  Real-space observation of current-driven domain wall motion in submicron magnetic wires. , 2003, Physical review letters.

[38]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[39]  Howard A. Padmore,et al.  Photoemission electron microscope for the study of magnetic materials , 1999 .

[40]  M. Donahue,et al.  Head To Head Domain Wall Structures In Thin Magnetic Stripes , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[41]  S. J. Rothman,et al.  An Electrochemical Technique for Microsectioning Silver , 1972 .