Needle in the haystack: structure-based toxin discovery.

In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint pressing research questions. Therefore, a strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. The strategy evolved from conduction of PSI-BLAST searches through to the combination of secondary-structure prediction with pattern-based searches. However, a newly developed tactic, in which fold recognition dominates, reduces reliance on sequence similarity and advances scientists toward a true structure-based protein-family expansion methodology.

[1]  R. Rappuoli,et al.  Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. , 2004, Journal of biotechnology.

[2]  C. Fraser,et al.  Application of microbial genomic science to advanced therapeutics. , 2005, Annual review of medicine.

[3]  Dong Xu,et al.  Computational methods for remote homolog identification. , 2005, Current protein & peptide science.

[4]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[5]  Kevin Karplus,et al.  Contact prediction using mutual information and neural nets , 2007, Proteins.

[6]  Christine A. Orengo,et al.  Methods of remote homology detection can be combined to increase coverage by 10% in the midnight zone , 2007, Bioinform..

[7]  F. Tian,et al.  A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity , 2007, Nature.

[8]  J. Bazan,et al.  Sequence and structural links between distant ADP-ribosyltransferase families. , 1997, Advances in experimental medicine and biology.

[9]  J. Barbieri,et al.  Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 Regulator of Kinase (Crk) Proteins* , 2003, Journal of Biological Chemistry.

[10]  Frances M. G. Pearl,et al.  The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution , 2006, Nucleic Acids Res..

[11]  N. Loman,et al.  An abundance of bacterial ADP-ribosyltransferases--implications for the origin of exotoxins and their human homologues. , 2001, Trends in microbiology.

[12]  Rino Rappuoli,et al.  In silico identification of novel bacterial ADP-ribosyltransferases. , 2004, International journal of medical microbiology : IJMM.

[13]  Tim J. P. Hubbard,et al.  Data growth and its impact on the SCOP database: new developments , 2007, Nucleic Acids Res..

[14]  L. Rychlewski,et al.  Identification of Herpes TATT-binding protein. , 2007, Antiviral research.

[15]  Marc A. Martí-Renom,et al.  Tools for comparative protein structure modeling and analysis , 2003, Nucleic Acids Res..

[16]  Jeannette Adu-Bobie,et al.  NarE: a novel ADP‐ribosyltransferase from Neisseria meningitidis , 2003, Molecular microbiology.

[17]  H. Garner,et al.  Biological characterization of a new type III secretion system effector from a clinical isolate of Aeromonas hydrophila-part II. , 2007, Microbial pathogenesis.

[18]  G. R. Andersen,et al.  Stealth and mimicry by deadly bacterial toxins. , 2006, Trends in biochemical sciences.

[19]  J. Auwerx,et al.  Sirtuin functions in health and disease. , 2007, Molecular endocrinology.

[20]  Leszek Rychlewski,et al.  LiveBench‐8: The large‐scale, continuous assessment of automated protein structure prediction , 2005, Protein science : a publication of the Protein Society.

[21]  Jakub Pas,et al.  Application of 3D‐Jury, GRDB, and Verify3D in fold recognition , 2003, Proteins.

[22]  Liam J. McGuffin,et al.  The Genomic Threading Database: a comprehensive resource for structural annotations of the genomes from key organisms , 2004, Nucleic Acids Res..

[23]  C. Schein,et al.  Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila--part I. , 2007, Microbial pathogenesis.

[24]  A. Norén,et al.  Metabolic regulation of nitrogen fixation in Rhodospirillum rubrum. , 2006, Biochemical Society transactions.

[25]  Leszek Rychlewski,et al.  Detection of reliable and unexpected protein fold predictions using 3D-Jury , 2003, Nucleic Acids Res..

[26]  K. Aktories,et al.  Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP‐ribosyltransferases , 2006, Molecular microbiology.

[27]  G. Axler-DiPerte,et al.  YtxR, a Conserved LysR-Like Regulator That Induces Expression of Genes Encoding a Putative ADP-Ribosyltransferase Toxin Homologue in Yersinia enterocolitica , 2006, Journal of bacteriology.

[28]  K. Aktories,et al.  Rho-modifying C3-like ADP-ribosyltransferases. , 2004, Reviews of physiology, biochemistry and pharmacology.

[29]  Jianjun Sun,et al.  How bacterial ADP-ribosylating toxins recognize substrates , 2004, Nature Structural &Molecular Biology.

[30]  Liam J. McGuffin,et al.  Improvement of the GenTHREADER Method for Genomic Fold Recognition , 2003, Bioinform..

[31]  P. Bourne CASP and CAFASP experiments and their findings. , 2003, Methods of biochemical analysis.

[32]  Michael J E Sternberg,et al.  Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre , 2008, Proteins.

[33]  R. Braren,et al.  The family of toxin‐related ecto‐ADP‐ribosyltransferases in humans and the mouse , 2002, Protein science : a publication of the Protein Society.

[34]  K. Aktories,et al.  Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. , 2003, Biochemistry.

[35]  T. Wahli,et al.  Characterization of an ADP-Ribosyltransferase Toxin (AexT) from Aeromonas salmonicida subsp. salmonicida , 2002, Journal of bacteriology.

[36]  R. Rappuoli,et al.  Three conserved consensus sequences identify the NAD‐binding site of ADP‐ribosylating enzymes, expressed by eukaryotes, bacteria and T‐even bacteriophages , 1996, Molecular microbiology.

[37]  Janusz M. Bujnicki,et al.  GeneSilico protein structure prediction meta-server , 2003, Nucleic Acids Res..

[38]  R. Edwards,et al.  A Glimpse into the Expanded Genome Content of Vibrio cholerae through Identification of Genes Present in Environmental Strains , 2005, Journal of bacteriology.

[39]  J. Barbieri,et al.  Bacterial Toxins that Covalently Modify Eukaryotic Proteins by ADP-Ribosylation , 2003 .

[40]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[41]  Fabrice Armougom,et al.  Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee , 2006, Nucleic Acids Res..

[42]  Emma Griffiths,et al.  Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr , 2008, Proceedings of the National Academy of Sciences.

[43]  Roland L. Dunbrack Sequence comparison and protein structure prediction. , 2006, Current opinion in structural biology.

[44]  L Rychlewski,et al.  From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions , 1999, Protein science : a publication of the Protein Society.

[45]  Y. Bessho,et al.  Crystal structure of the RNA 2'-phosphotransferase from Aeropyrum pernix K1. , 2005, Journal of molecular biology.

[46]  Liam J McGuffin,et al.  Benchmarking secondary structure prediction for fold recognition , 2003, Proteins.

[47]  Peter F. Hallin,et al.  Ten years of bacterial genome sequencing: comparative-genomics-based discoveries , 2006, Functional & Integrative Genomics.

[48]  J. d'Alayer,et al.  Aeromonas Exoenzyme T of Aeromonas salmonicida Is a Bifunctional Protein That Targets the Host Cytoskeleton* , 2007, Journal of Biological Chemistry.

[49]  Jayanth R Banavar,et al.  Physics of proteins. , 2007, Annual review of biophysics and biomolecular structure.

[50]  Johannes Söding,et al.  HHsenser: exhaustive transitive profile search using HMM–HMM comparison , 2006, Nucleic Acids Res..

[51]  Katharina Dittmar,et al.  In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs) , 2005, BMC Genomics.

[52]  Amos Bairoch,et al.  ScanProsite: a reference implementation of a PROSITE scanning tool. , 2002, Applied bioinformatics.

[53]  T. Honda,et al.  Identification and characterization of VopT, a novel ADP‐ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2 , 2007, Cellular microbiology.

[54]  G. de Murcia,et al.  The PARP superfamily , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[55]  N. Reiner,et al.  The Salmonella spvB virulence gene encodes an enzyme that ADP‐ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells , 2001, Molecular microbiology.

[56]  Piero Fariselli,et al.  The WWWH of remote homolog detection: The state of the art , 2006, Briefings Bioinform..

[57]  M. Seman,et al.  Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. , 2004, Current medicinal chemistry.

[58]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[59]  J. Baseman,et al.  ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Rappuoli,et al.  Common features of the NAD‐binding and catalytic site of ADP‐ribosylating toxins , 1994, Molecular microbiology.

[61]  Cyrus Chothia,et al.  The SUPERFAMILY database in 2004: additions and improvements , 2004, Nucleic Acids Res..

[62]  J. Sun,et al.  Pseudomonas aeruginosa ExoS and ExoT. , 2004, Reviews of physiology, biochemistry and pharmacology.

[63]  T. Thomas,et al.  Pathogenic archaea: do they exist? , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  H. Yu,et al.  Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system. , 2008, Microbial pathogenesis.

[65]  The light organ symbiont Vibrio fischeri possesses two distinct secreted ADP-ribosyltransferases , 1997, Journal of bacteriology.

[66]  F. Koch-Nolte,et al.  The spvB gene‐product of the Salmonella enterica virulence plasmid is a mono(ADP‐ribosyl)transferase , 2000, Molecular microbiology.

[67]  J. Tainer,et al.  The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. , 2002, International journal of medical microbiology : IJMM.

[68]  Ruth Nussinov,et al.  A method for simultaneous alignment of multiple protein structures , 2004, Proteins.

[69]  R. Rappuoli,et al.  Bacterial Protein Toxins , 2003 .

[70]  T. B. Cooley,et al.  THE BACTERIAL TOXINS. , 1901 .

[71]  K. Acharya,et al.  A family of killer toxins , 2006, The FEBS journal.

[72]  Janet M. Thornton,et al.  PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids , 2004, Nucleic Acids Res..

[73]  M. Hottiger,et al.  The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. , 2008, Frontiers in bioscience : a journal and virtual library.

[74]  F. Gisou van der Goot,et al.  The bacterial toxin toolkit , 2001, Nature Reviews Molecular Cell Biology.

[75]  Daniela Corda,et al.  Functional aspects of protein mono‐ADP‐ribosylation , 2003, The EMBO journal.

[76]  R. Fieldhouse,et al.  Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae* , 2008, Journal of Biological Chemistry.

[77]  Arne Elofsson,et al.  Pcons.net: protein structure prediction meta server , 2007, Nucleic Acids Res..

[78]  D. Guiney,et al.  The best defense is a good offense--Salmonella deploys an ADP-ribosylating toxin. , 2001, Trends in microbiology.

[79]  Nigel J. Martin,et al.  Gene3D: comprehensive structural and functional annotation of genomes , 2007, Nucleic Acids Res..

[80]  K. Aktories,et al.  Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins , 2004, Microbiology and Molecular Biology Reviews.

[81]  J. Barbieri,et al.  The family of bacterial ADP-ribosylating exotoxins , 1995, Clinical microbiology reviews.

[82]  F. Bazan,et al.  ADP-ribosyltransferases: plastic tools for inactivating protein and small molecular weight targets. , 2001, Journal of biotechnology.

[83]  C. Collins,et al.  Identification of SpyA, a novel ADP‐ribosyltransferase of Streptococcus pyogenes , 2004, Molecular microbiology.

[84]  R. Depping,et al.  ModA and ModB, Two ADP-Ribosyltransferases Encoded by Bacteriophage T4: Catalytic Properties and Mutation Analysis , 2004, Journal of bacteriology.

[85]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[86]  P. Bourne,et al.  Analysis of the Human Kinome Using Methods Including Fold Recognition Reveals Two Novel Kinases , 2008, PloS one.

[87]  J. Tainer,et al.  Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex , 1999, Nature Structural Biology.

[88]  S. Makino,et al.  The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. , 2005, Microbiology.

[89]  A. Pautsch,et al.  C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins , 2007, Naunyn-Schmiedeberg's Archives of Pharmacology.

[90]  I. Pastan,et al.  Immunotoxin treatment of cancer. , 2007, Annual review of medicine.

[91]  A. R. Merrill,et al.  Application of a fluorometric assay for characterization of the catalytic competency of a domain III fragment of Pseudomonas aeruginosa exotoxin A. , 2001, Analytical biochemistry.