The hybrid genetic fuzzy C-means: a reasoned implementation

In this paper we present an hybrid approach which integrate Fuzzy C-Means (FCM) algorithms and Genetic Algorithms (GAs) to design an optimal classifier for the specific classification problem. This integration allows automatic generation of an classifier system, with an optimized subset of features, from a database of examples. The generated classifier strongly outperform the classic FCM algorithm. A reasoned implementation of the hybrid algorithm, we called GFCM, is given along with a comparative study and performance evaluation results on several public benchmark databases. Results obtained show the efficiency of GFCM algorithm.

[1]  T. Van Le Evolutionary fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[2]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[3]  Lipika Dey,et al.  A feature selection technique for classificatory analysis , 2005, Pattern Recognit. Lett..

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  J. Bezdek,et al.  c-means clustering with the l/sub l/ and l/sub infinity / norms , 1991 .

[6]  Viriato António Pereira Marinho Marques Proceedings of the 6th WSEAS international conference on Fuzzy systems , 2005 .

[7]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[8]  Hung-Ming Chen,et al.  Design of Nearest Neighbor Classifiers Using an Intelligent Multi-objective Evolutionary Algorithm , 2004, PRICAI.

[9]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[10]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[11]  Francisco Herrera,et al.  Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases , 2002, Advances in Fuzzy Systems - Applications and Theory.

[12]  David B. Fogel,et al.  Evolving fuzzy clusters , 1993, IEEE International Conference on Neural Networks.

[13]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[14]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[15]  G. Klir,et al.  Evolutionary fuzzy c-means clustering algorithm , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[16]  Sanghamitra Bandyopadhyay Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[17]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[18]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[19]  Rabab Kreidieh Ward,et al.  Genetic algorithms for feature selection and weighting, a review and study , 2001, Proceedings of Sixth International Conference on Document Analysis and Recognition.

[20]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  J. Bezdek,et al.  e-Means Clustering with the I1 and I, Norms , 1991 .

[22]  J. Bezdek,et al.  Genetic fuzzy clustering , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[23]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..