Semiparametric Regression Smoothing of Non‐linear Time Series

In this paper, we consider using a semiparametric regression approach to modelling non-linear autoregressive time series. Based on a finite series approximation to non-parametric components, an adaptive selection procedure for the number of summands in the series approximation is proposed. Meanwhile, a large sample study is detailed and a small sample simulation for the Mackey-Glass system is presented to support the large sample study.

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[3]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[4]  A. Gallant,et al.  Finding Chaos in Noisy Systems , 1992 .

[5]  Hua Liang,et al.  Asymptotic normality of pseudo-LS estimator for partly linear autoregression models , 1995 .

[6]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[7]  Graciela Boente,et al.  Consistency of a nonparametric estimate of a density function for dependent variables , 1988 .

[8]  D. Tjøstheim,et al.  Identification of nonlinear time series: First order characterization and order determination , 1990 .

[9]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[10]  J. Readshaw,et al.  A Model of Nicholson's Blowfly Cycles and its Relevance to Predation Theory , 1980 .

[11]  D. Tjøstheim Non-linear Time Series: A Selective Review* , 1994 .

[12]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[13]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[14]  P. Doukhan Mixing: Properties and Examples , 1994 .

[15]  H. Tong,et al.  On consistent nonparametric order determination and chaos , 1992 .

[16]  Howell Tong,et al.  Nonparametric function estimation in noisy chaos , 1993 .

[17]  Jiti Gao Asymptotic properties of some estimators for partly linear stationary autoregressive models , 1995 .

[18]  Richard A. Davis,et al.  Time Series: Theory and Methods (2Nd Edn) , 1993 .

[19]  Qiwei Yao,et al.  On subset selection in non-parametric stochastic regression , 1994 .

[20]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[21]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[22]  Philippe Vieu,et al.  Choice of regressors in nonparametric estimation , 1994 .

[23]  Jiti Gao,et al.  M-TYPE SMOOTHING SPLINES IN NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION MODELS , 1997 .

[24]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[25]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[26]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[27]  P. Vieu Order Choice in Nonlinear Autoregressive Models , 1995 .

[28]  Jiti Gao Adaptive parametric test in a semiparametric regression model , 1997 .

[29]  A. Seheult,et al.  Analysis of Field Experiments by Least Squares Smoothing , 1985 .

[30]  D. Tjøstheim Non-linear time series and Markov chains , 1990, Advances in Applied Probability.

[31]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[32]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[33]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[34]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .