Combinatorial Degree Bound for Toric ideals of hypergraphs

Associated to any hypergraph is a toric ideal encoding the algebraic relations among its edges. We study these ideals and the combinatorics of their minimal generators, and derive general degree bounds for both uniform and non-uniform hypergraphs in terms of balanced hypergraph bicolorings, separators, and splitting sets. In turn, this provides complexity bounds for algebraic statistical models associated to hypergraphs. As two main applications, we recover a well-known complexity result for Markov bases of arbitrary 3-way tables, and we show that the defining ideal of the tangential variety is generated by quadratics and cubics in cumulant coordinates.

[1]  Takayuki Hibi,et al.  INDISPENSABLE BINOMIALS OF FINITE GRAPHS , 2005 .

[2]  Enrique Reyes,et al.  Minimal generators of toric ideals of graphs , 2010, Adv. Appl. Math..

[3]  Sonja Petrović,et al.  Toric algebra of hypergraphs , 2012, 1206.1904.

[4]  Rafael H. Villarreal,et al.  Rees algebras of edge ideals , 1995 .

[5]  Satoshi Aoki,et al.  Indispensable monomials of toric ideals and Markov bases , 2005, J. Symb. Comput..

[6]  Jesús A. De Loera,et al.  Markov bases of three-way tables are arbitrarily complicated , 2006, J. Symb. Comput..

[7]  Rafael H. Villarreal,et al.  Ring graphs and toric ideals , 2007, Electron. Notes Discret. Math..

[8]  Seth Sullivant,et al.  Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.

[9]  Apostolos Thoma,et al.  Minimal systems of binomial generators and the indispensable complex of a toric ideal , 2006, math/0607249.

[10]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[11]  Seth Sullivant,et al.  A Divide-and-Conquer Algorithm for Generating Markov Bases of Multi-way Tables , 2004, Comput. Stat..

[12]  青木 敏,et al.  Lectures on Algebraic Statistics (Oberwolfach Seminars Vol.39), Mathias Drton, Bernd Sturmfels and Seth Sullivant 著, Birkhauser, Basel, Boston, Berlin, 2009年3月, 171+viii pp., 価格 24.90i, ISBN 978-3-7643-8904-8 , 2012 .

[13]  Christos Tatakis,et al.  On the universal Gröbner bases of toric ideals of graphs , 2010, J. Comb. Theory, Ser. A.

[14]  S. Sullivant,et al.  Markov Bases of Binary Graph Models , 2003, math/0308280.

[15]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[16]  L. Oeding Set-theoretic defining equations of the tangential variety of the Segre variety , 2009, 0911.5276.

[17]  A. Takemura,et al.  Some characterizations of minimal Markov basis for sampling from discrete conditional distributions , 2004 .

[18]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[19]  L. O'Carroll GRÖBNER BASES AND CONVEX POLYTOPES (University Lecture Series 8) , 1997 .

[20]  Seth Sullivant,et al.  A finiteness theorem for Markov bases of hierarchical models , 2007, J. Comb. Theory, Ser. A.

[21]  B. Sturmfels,et al.  Binary Cumulant Varieties , 2011, 1103.0153.

[22]  Takayuki Hibi,et al.  Toric Ideals Generated by Quadratic Binomials , 1999 .