Combinatorial Degree Bound for Toric ideals of hypergraphs
暂无分享,去创建一个
[1] Takayuki Hibi,et al. INDISPENSABLE BINOMIALS OF FINITE GRAPHS , 2005 .
[2] Enrique Reyes,et al. Minimal generators of toric ideals of graphs , 2010, Adv. Appl. Math..
[3] Sonja Petrović,et al. Toric algebra of hypergraphs , 2012, 1206.1904.
[4] Rafael H. Villarreal,et al. Rees algebras of edge ideals , 1995 .
[5] Satoshi Aoki,et al. Indispensable monomials of toric ideals and Markov bases , 2005, J. Symb. Comput..
[6] Jesús A. De Loera,et al. Markov bases of three-way tables are arbitrarily complicated , 2006, J. Symb. Comput..
[7] Rafael H. Villarreal,et al. Ring graphs and toric ideals , 2007, Electron. Notes Discret. Math..
[8] Seth Sullivant,et al. Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.
[9] Apostolos Thoma,et al. Minimal systems of binomial generators and the indispensable complex of a toric ideal , 2006, math/0607249.
[10] Seth Sullivant,et al. Lectures on Algebraic Statistics , 2008 .
[11] Seth Sullivant,et al. A Divide-and-Conquer Algorithm for Generating Markov Bases of Multi-way Tables , 2004, Comput. Stat..
[12] 青木 敏,et al. Lectures on Algebraic Statistics (Oberwolfach Seminars Vol.39), Mathias Drton, Bernd Sturmfels and Seth Sullivant 著, Birkhauser, Basel, Boston, Berlin, 2009年3月, 171+viii pp., 価格 24.90i, ISBN 978-3-7643-8904-8 , 2012 .
[13] Christos Tatakis,et al. On the universal Gröbner bases of toric ideals of graphs , 2010, J. Comb. Theory, Ser. A.
[14] S. Sullivant,et al. Markov Bases of Binary Graph Models , 2003, math/0308280.
[15] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[16] L. Oeding. Set-theoretic defining equations of the tangential variety of the Segre variety , 2009, 0911.5276.
[17] A. Takemura,et al. Some characterizations of minimal Markov basis for sampling from discrete conditional distributions , 2004 .
[18] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[19] L. O'Carroll. GRÖBNER BASES AND CONVEX POLYTOPES (University Lecture Series 8) , 1997 .
[20] Seth Sullivant,et al. A finiteness theorem for Markov bases of hierarchical models , 2007, J. Comb. Theory, Ser. A.
[21] B. Sturmfels,et al. Binary Cumulant Varieties , 2011, 1103.0153.
[22] Takayuki Hibi,et al. Toric Ideals Generated by Quadratic Binomials , 1999 .