Electric field driven magnetic domain wall motion in ferromagnetic-ferroelectric heterostructures

We investigate magnetic domain wall (MDW) dynamics induced by applied electric fields in ferromagnetic-ferroelectric thin-film heterostructures. In contrast to conventional driving mechanisms where MDW motion is induced directly by magnetic fields or electric currents, MDW motion arises here as a result of strong pinning of MDWs onto ferroelectric domain walls (FDWs) via local strain coupling. By performing extensive micromagnetic simulations, we find several dynamical regimes, including instabilities such as spin wave emission and complex transformations of the MDW structure. In all cases, the time-averaged MDW velocity equals that of the FDW, indicating the absence of Walker breakdown.

[1]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[2]  S. Fukami,et al.  Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization , 2012, Nature Communications.

[3]  Geoffrey S. D. Beach,et al.  Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires , 2005, Nature materials.

[4]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[5]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[6]  A. Vansteenkiste,et al.  MuMax: A new high-performance micromagnetic simulation tool , 2011, 1102.3069.

[7]  S. Dijken,et al.  Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries , 2012, 1201.6521.

[8]  S. van Dijken,et al.  Electrical Writing of Magnetic Domain Patterns in Ferromagnetic/Ferroelectric Heterostructures , 2011, IEEE Transactions on Magnetics.

[9]  E. A. Little The dynamic behavior of domain walls in barium titanate , 1954 .

[10]  H. N. Lee,et al.  Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. , 2009, Physical review letters.

[11]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[12]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[13]  S. Dijken,et al.  Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO3 , 2012, 1210.6533.

[14]  J. Son,et al.  Fast ferroelectric domain wall motion in BiAlO3 , 2013 .

[15]  S. van Dijken,et al.  Pattern Transfer and Electric‐Field‐Induced Magnetic Domain Formation in Multiferroic Heterostructures , 2011, Advanced materials.

[16]  Jacques Miltat,et al.  Faster magnetic walls in rough wires , 2003, Nature materials.

[17]  R. O'handley Modern magnetic materials , 1999 .

[18]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  J. H. Franken,et al.  Electric-field control of domain wall motion in perpendicularly magnetized materials , 2012, Nature Communications.

[21]  Y. Takamura,et al.  Spatially resolved strain-imprinted magnetic states in an artificial multiferroic , 2012 .

[22]  Stuart S. P. Parkin,et al.  Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires , 2007 .

[23]  Sebastiaan van Dijken,et al.  Electric-field control of magnetic domain wall motion and local magnetization reversal , 2011, Scientific Reports.

[24]  F. García-Sánchez,et al.  Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission , 2011 .

[25]  Weisheng Zhao,et al.  Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures , 2013, Nature Communications.

[26]  G. Tatara,et al.  A brief review of field- and current-driven domain-wall motion , 2011 .

[27]  Uwe Bauer,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[28]  B. Diény,et al.  Magnetic logic using nanowires with perpendicular anisotropy , 2009, Nanotechnology.