A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules

Abstract We present a simplified time-dependent density functional theory approach (sTD-DFT) that allows fast computation of electronic ultraviolet (UV) or circular dichroism (CD) spectra of molecules with 500–1000 atoms. The matrix elements are treated in the same way as in the recently proposed simplified Tamm-Dancoff approach (sTDA, S. Grimme, J. Chem. Phys., 138 (2013), 244104) but instead of applying the Tamm-Dancoff approximation, the standard linear-response density functional theory problem is solved. Compared to sTDA, the method leads to an increase in computation time (typically a factor of 2–5 compared to the corresponding sTDA) which is justified since the resulting transition dipole moments are in general of higher quality. This becomes important if spectral intensities (e.g. single-photon oscillator and rotatory transition strengths) are of interest. Comparison of UV and CD spectra obtained from sTD-DFT and sTDA for some typical systems employing standard hybrid functionals shows that both yield very similar excitation energies but the advantage of using the former approach for transition moments. In order to show the applicability of sTD-DFT to systems which are far beyond the scope of conventional TD-DFT, we present the CD spectrum of a substituted, chiral fullerene over a range of almost 1200 excited states. We propose this method as a more reliable alternative for the prediction especially of the more challenging CD spectra.

[1]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[2]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[3]  K. Ohno Some remarks on the Pariser-Parr-Pople method , 1964 .

[4]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[5]  Julian Yarkony,et al.  Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. , 2010, The Journal of chemical physics.

[6]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[7]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[8]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[9]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[10]  S. Grimme,et al.  Theoretical Electronic Circular Dichroism Spectroscopy of Large Organic and Supramolecular Systems , 2012 .

[11]  N. Mataga,et al.  Electronic Structure and Spectra of Some Nitrogen Heterocycles , 1957 .

[12]  Stefan Grimme,et al.  Density functional calculations with configuration interaction for the excited states of molecules , 1996 .

[13]  S. Grimme,et al.  Enantiomerenreine [M6L12]‐ oder [M12L24]‐Polyeder aus flexiblen Bis(pyridin)‐Liganden , 2014 .

[14]  Luis Serrano-Andrés,et al.  Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds , 1999 .

[15]  Stefan Grimme,et al.  A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules. , 2013, The Journal of chemical physics.

[16]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[17]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[18]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[19]  T. Bally,et al.  INCORRECT DISSOCIATION BEHAVIOR OF RADICAL IONS IN DENSITY FUNCTIONAL CALCULATIONS , 1997 .

[20]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[21]  D. Truhlar,et al.  Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. , 2013, The Journal of chemical physics.

[22]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[23]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[24]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[25]  Stefan Grimme,et al.  Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory , 2000 .

[26]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[27]  Andreas Hansen,et al.  Excited states using the simplified Tamm-Dancoff-Approach for range-separated hybrid density functionals: development and application. , 2014, Physical chemistry chemical physics : PCCP.

[28]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[29]  J. Chocholousová,et al.  An organometallic route to long helicenes , 2009, Proceedings of the National Academy of Sciences.

[30]  R. Woody,et al.  Theory of Circular Dichroism of Proteins , 1996 .

[31]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[32]  L. Rosenfeld Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen , 1929 .

[33]  G. Klopman,et al.  A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules , 1964 .

[34]  David J. Tozer,et al.  Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory , 2003 .

[35]  M. Petersilka,et al.  DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .

[36]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[37]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[38]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[39]  S. Grimme Calculation of the Electronic Spectra of Large Molecules , 2004 .

[40]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[41]  R. Woody,et al.  Independent Systems Theory for Predicting Electronic Circular Dichroism , 2012 .

[42]  Aage E. Hansen,et al.  Ab initio calculations of oscillator and rotatory strengths in the random‐phase approximation: Twisted mono‐olefins , 1977 .

[43]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[44]  Dmitrij Rappoport,et al.  Density functional methods for excited states: equilibrium structure and electronic spectra , 2005 .

[45]  S. Peyerimhoff Spectroscopy: Computational Methods , 2002 .

[46]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[47]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[48]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[49]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[50]  Stefan Grimme,et al.  The Vibronic Structure of Electronic Absorption Spectra of Large Molecules: A Time-Dependent Density Functional Study on the Influence of “Exact” Hartree−Fock Exchange , 2004 .

[51]  K. Rissanen,et al.  Enantiomerically pure [M(6)L(12)] or [M(12)L(24)] polyhedra from flexible bis(pyridine) ligands. , 2014, Angewandte Chemie.

[52]  J. Fabian,et al.  Calculation of excitation energies of organic chromophores: a critical evaluation , 2002 .

[53]  A. Dreuw,et al.  The Art of Choosing the Right Quantum Chemical Excited‐State Method for Large Molecular Systems , 2011 .

[54]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[55]  E. Baerends,et al.  Comparison of the accurate Kohn-Sham solution with the generalized gradient approximations , 2000 .

[56]  Weitao Yang,et al.  A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons , 1998 .

[57]  Ross D. Adamson,et al.  Coulomb-attenuated exchange energy density functionals , 1996 .

[58]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[59]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[60]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[61]  B. Pasquini,et al.  Modelling the nucleon structure , 2015, 1510.02567.

[62]  F. Diederich,et al.  Optically Active Macrocycliccis-3 Bis-Adducts of C60: Regio- and Stereoselective Synthesis, Exciton Chirality Coupling, and Determination of the Absolute Configuration, and First Observation of Exciton Coupling between Fullerene Chromophores in a Chiral Environment , 2000 .

[63]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[64]  Thomas Bredow,et al.  Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations , 2013, J. Comput. Chem..

[65]  G. Fasman Circular Dichroism and the Conformational Analysis of Biomolecules , 1996, Springer US.

[66]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[67]  藤田 純一,et al.  A.L. Fetter and J.D. Walecka: Quantum Theory of Many-Particle Systems, McGraw-Hill Book Co., New York, 1971, 601頁, 15×23cm, 7,800円. , 1971 .

[68]  D. C. Ghosh,et al.  Semiempirical evaluation of the global hardness of the atoms of 103 elements of the periodic table using the most probable radii as their size descriptors , 2010 .

[69]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[70]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[71]  Filipp Furche,et al.  On the density matrix based approach to time-dependent density functional response theory , 2001 .

[72]  Evert Jan Baerends,et al.  Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients for molecules , 1997 .

[73]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[74]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[75]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .