The spectral bundle method with second-order information
暂无分享,去创建一个
[1] P. Lancaster. On eigenvalues of matrices dependent on a parameter , 1964 .
[2] Tosio Kato. Perturbation theory for linear operators , 1966 .
[3] P. Wolfe,et al. The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .
[4] R. Fletcher. Semi-Definite Matrix Constraints in Optimization , 1985 .
[5] M. Overton. On minimizing the maximum eigenvalue of a symmetric matrix , 1988 .
[6] Michael L. Overton,et al. On the Sum of the Largest Eigenvalues of a Symmetric Matrix , 1992, SIAM J. Matrix Anal. Appl..
[7] Jochem Zowe,et al. A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..
[8] Michael L. Overton,et al. Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..
[9] F. Jarre. An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices , 1993 .
[10] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[11] G. Rinaldi,et al. Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .
[12] Yin Zhang,et al. A Study of Indicators for Identifying Zero Variables in Interior-Point Methods , 1994, SIAM Rev..
[13] Alexander I. Barvinok,et al. Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..
[14] Michael L. Overton,et al. Second Derivatives for Optimizing Eigenvalues of Symmetric Matrices , 1995, SIAM J. Matrix Anal. Appl..
[15] Alexander Shapiro,et al. On Eigenvalue Optimization , 1995, SIAM J. Optim..
[16] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[17] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[18] Gábor Pataki,et al. On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..
[19] M. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .
[20] François Oustry,et al. The U-Lagrangian of the Maximum Eigenvalue Function , 1999, SIAM J. Optim..
[21] C. Helmberg. Semidefinite Programming for Combinatorial Optimization , 2000 .
[22] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[23] François Oustry,et al. A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..
[24] Christoph Helmberg,et al. Bundle Methods to Minimize the Maximum Eigenvalue Function , 2000 .
[25] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[26] Christoph Helmberg,et al. A spectral bundle method with bounds , 2002, Math. Program..
[28] Christoph Helmberg,et al. Numerical evaluation of SBmethod , 2003, Math. Program..
[29] Fakultät für Mathematik , 2013 .
[30] Monique Laurent,et al. Semidefinite optimization , 2019, Graphs and Geometry.
[31] J. Nocedal,et al. The Formulation and Analysis of Numerical Methods for Inverse Eigenvalue Problems , 2015 .