The spectral bundle method with second-order information

The spectral bundle (SB) method was introduced by Helmberg and Rend [A spectral bundle method for semidefinite programming. SIAM J. Optim. 10 (2000), pp. 673–696] to solve a class of eigenvalue optimization problems that is equivalent to the class of semidefinite programs with the constant trace property. We investigate the feasibility and effectiveness of including full or partial second-order information in the SB method, building on work of Overton [On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J. Matrix Anal. Appl. 9(2) (1988), pp. 256–268] and Overton and Womersley [Second derivatives for optimizing eigenvalues of symmetric matrices. SIAM J. Matrix Anal. Appl. 16 (1995), pp. 697–718]. We propose several variations that include second-order information in the SB method and describe efficient implementations. One of these, namely diagonal scaling based on a low-rank approximation of the second-order model for λmax, improves the standard SB method both with respect to accuracy requirements and computation time.

[1]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[4]  R. Fletcher Semi-Definite Matrix Constraints in Optimization , 1985 .

[5]  M. Overton On minimizing the maximum eigenvalue of a symmetric matrix , 1988 .

[6]  Michael L. Overton,et al.  On the Sum of the Largest Eigenvalues of a Symmetric Matrix , 1992, SIAM J. Matrix Anal. Appl..

[7]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[8]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[9]  F. Jarre An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices , 1993 .

[10]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[11]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[12]  Yin Zhang,et al.  A Study of Indicators for Identifying Zero Variables in Interior-Point Methods , 1994, SIAM Rev..

[13]  Alexander I. Barvinok,et al.  Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..

[14]  Michael L. Overton,et al.  Second Derivatives for Optimizing Eigenvalues of Symmetric Matrices , 1995, SIAM J. Matrix Anal. Appl..

[15]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[16]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[17]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[18]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[19]  M. Todd A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .

[20]  François Oustry,et al.  The U-Lagrangian of the Maximum Eigenvalue Function , 1999, SIAM J. Optim..

[21]  C. Helmberg Semidefinite Programming for Combinatorial Optimization , 2000 .

[22]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[23]  François Oustry,et al.  A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..

[24]  Christoph Helmberg,et al.  Bundle Methods to Minimize the Maximum Eigenvalue Function , 2000 .

[25]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[26]  Christoph Helmberg,et al.  A spectral bundle method with bounds , 2002, Math. Program..

[27]  A. Zients Andy , 2003 .

[28]  Christoph Helmberg,et al.  Numerical evaluation of SBmethod , 2003, Math. Program..

[29]  Fakultät für Mathematik , 2013 .

[30]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[31]  J. Nocedal,et al.  The Formulation and Analysis of Numerical Methods for Inverse Eigenvalue Problems , 2015 .