Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research

Abstract Full-field optical coherence microscopy performed with a supercontinuum light source based on a Q-switched micro-chip laser pumped photonic crystal fiber is shown to provide ultra-high resolution images from the interior of scattering samples. We exemplify our imaging approach by a detailed analysis of fiber reinforced polymer samples: comparative analysis by X-ray computed tomography as well as advanced data processing of the obtained 3D data is used to retrieve information on physical parameters like fiber orientation and distribution of point defect structures.

[1]  Daniel L Marks,et al.  Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C K Hitzenberger,et al.  Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials. , 2006, Optics express.

[3]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[4]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[5]  Monika Ritsch-Marte,et al.  Enhancing of structures in coherence probe microscopy imaging , 2011, International Workshop on Image Processing and Optical Engineering.

[6]  W Drexler,et al.  Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region. , 2003, Optics letters.

[7]  Charles L. Tucker,et al.  Fiber Orientation in 3-D Injection Molded Features , 1999 .

[8]  Kang Zhang,et al.  Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system , 2010, Optics express.

[9]  Shuo Tang,et al.  Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography. , 2011, Optics letters.

[10]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[11]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[12]  B. Bouma,et al.  Handbook of Optical Coherence Tomography , 2001 .

[13]  T. Yatagai,et al.  Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. , 2002, Optics letters.

[14]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[15]  Wang-Q Lim,et al.  Image Separation Using Shearlets , 2011 .

[16]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[17]  Dimitri Van De Ville,et al.  Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform , 2009, IEEE Transactions on Image Processing.

[18]  D. Stifter,et al.  Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography , 2007 .

[19]  Norihiko Nishizawa,et al.  Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800–1700 nm wavelength region , 2012, Biomedical optics express.

[20]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[21]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[22]  Sören Häuser,et al.  Fast Finite Shearlet Transform: a tutorial , 2012 .

[23]  S. Leon-Saval,et al.  Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. , 2006, Optics express.

[24]  Adolf Friedrich Fercher,et al.  Optical coherence tomography - development, principles, applications. , 2010, Zeitschrift fur medizinische Physik.

[25]  Gabriele Steidl,et al.  Convex multiclass segmentation with shearlet regularization , 2011, Int. J. Comput. Math..

[26]  C. Hitzenberger,et al.  Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography. , 2010, Optics express.

[27]  Monika Ritsch-Marte,et al.  Flexible contrast for low-coherence interference microscopy by Fourier-plane filtering with a spatial light modulator. , 2010, Optics letters.

[28]  Bettina Heise,et al.  Coherence Probe Microscopy Imaging and Analysis for Fiber-Reinforced Polymers , 2011, SCIA.

[29]  Johann Kastner,et al.  Evaluation of Computed Tomography Data from Fibre Reinforced Polymers to Determine Fibre Length Distribution , 2011 .

[30]  C. Boccara,et al.  Ultrahigh-resolution full-field optical coherence tomography. , 2004, Applied optics.

[31]  Michael Felsberg,et al.  Riesz-Transforms Versus Derivatives: On the Relationship Between the Boundary Tensor and the Energy Tensor , 2005, Scale-Space.

[32]  Qi Zhao,et al.  Spectral domain optical coherence tomography using a microchip laser-pumped photonic crystal fiber supercontinuum source , 2008, SPIE BiOS.

[33]  Manjula D. Sharma,et al.  Image formation in low-coherence and confocal interference microscopes. , 2004, Applied optics.

[34]  Michael Pircher,et al.  En-face scanning optical coherence tomography with ultra-high resolution for material investigation. , 2005, Optics express.

[35]  Katharine Grieve,et al.  Full-field optical coherence microscopy , 2004, Advanced Laser Technologies.