Numerical solution of stochastic differential equations in the sense of Stratonovich in an amorphization crystal lattice model

Model phase transition /PT/ involves the formation of defects (voids or blisters), their migration into thin layers sample from SiC and Mo, accumulation of defects, and consequently, a change in the crystal lattice strain which leads to amorphization of materials. Mathematical model is related with solution of stochastic differential equations /SDEs/. The scheme used is a two-level modification of the asymptotically unbiased numerical method for solving SDEs in the sense of Stratonovich, which has second order mean-square convergence for SDEs with a single noise or for SDEs with additive noise. Based on example of computer simulation of porosity and amorphization lattice are to be discussed characteristics of phase transition at initial stage as well their influence on protective qualities of SiC thin layer cover subjected by radiation of Xe + + ions.

[1]  V. Savchenko,et al.  Computer Simulation of the Origination Porosity , 2012 .

[2]  J. Frankel Kinetic theory of liquids , 1946 .

[3]  A. Zakirov,et al.  Nonequilibrium nucleation: Silicon carbide clusters , 2012, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques.

[4]  A. Bondareva,et al.  Silicon Carbide Solid-Phase Epitaxy on a Microporous Substratum , 2012 .

[5]  A. Bondareva,et al.  Computer simulation of blistering in multilayer mirrors for EUV lithography , 2010 .

[6]  Kiyosi Itô 109. Stochastic Integral , 1944 .

[7]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[8]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[9]  F. Liu,et al.  Anisotropic strain enhanced hydrogen solubility in bcc metals: the independence on the sign of strain. , 2012, Physical review letters.

[10]  V. Korolyuk,et al.  A. V. Skorokhod's investigations in the area of limit theorems for random processes and the theory of stochastic differential equations , 1990 .

[11]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[12]  V. Levchenko,et al.  A kinetic stochastic model of blistering and nanofilm islands deposition: self-organization problem , 2007 .

[13]  A. Bondareva,et al.  Computer Simulation Model for First-Order Phase Transition Fluctuation Stage , 2010 .

[14]  Stochastic simulation of the fluctuation stage in the formation of thin films , 2005 .

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[16]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[17]  V. Levchenko,et al.  Stochastic model applied to plasma-surface interaction's simulation , 2006 .

[18]  S. S. Artemiev,et al.  Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations , 1997 .

[19]  P. Kloeden,et al.  Numerical Solution of Sde Through Computer Experiments , 1993 .

[20]  G. Hlawacek,et al.  Digging gold: keV He+ ion interaction with Au , 2013, Beilstein journal of nanotechnology.

[21]  S. Kukushkin,et al.  New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment , 2008 .

[22]  L. Arnold Random Dynamical Systems , 2003 .

[23]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[24]  N. Krylov Controlled Diffusion Processes , 1980 .

[25]  Marcin Kamiński,et al.  On probabilistic fatigue models for composite materials , 2002 .

[26]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[27]  R. L. Stratonovich Conditional Markov Processes and their Application to the Theory of Optimal Control , 1968 .

[28]  Douglass E. Post,et al.  Physics of Plasma-Wall Interactions in Controlled Fusion , 1986, Springer US.

[29]  L. Bachelier Les probabilités à plusieurs variables , 2022 .

[30]  Light-atom diffusion and clustering at crystal surfaces , 1997 .

[31]  R. Andrievski Nano-sized silicon carbide: synthesis, structure and properties , 2009 .

[32]  A. T. Bharucha-Reid Elements of the theory of Markov processes and their applications , 1961 .

[33]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[34]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[35]  A. Bondareva,et al.  Crystalline islands of semiconductor films , 2011 .

[36]  C. Doléans-Dade,et al.  Equations differentielles stochastiques , 1977 .

[37]  Parallel realization of statistical simulation and random number generators , 2002 .

[38]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.