Scalable laplacian eigenfluids

The Laplacian Eigenfunction method for fluid simulation, which we refer to as Eigenfluids, introduced an elegant new way to capture intricate fluid flows with near-zero viscosity. However, the approach does not scale well, as the memory cost grows prohibitively with the number of eigenfunctions. The method also lacks generality, because the dynamics are constrained to a closed box with Dirichlet boundaries, while open, Neumann boundaries are also needed in most practical scenarios. To address these limitations, we present a set of analytic eigenfunctions that supports uniform Neumann and Dirichlet conditions along each domain boundary, and show that by carefully applying the discrete sine and cosine transforms, the storage costs of the eigenfunctions can be made completely negligible. The resulting algorithm is both faster and more memory-efficient than previous approaches, and able to achieve lower viscosities than similar pseudo-spectral methods. We are able to surpass the scalability of the original Laplacian Eigenfunction approach by over two orders of magnitude when simulating rectangular domains. Finally, we show that the formulation allows forward scattering to be directed in a way that is not possible with any other method.

[1]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[2]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[3]  Steven A. Orszag,et al.  Numerical Methods for the Simulation of Turbulence , 1969 .

[4]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[5]  Peter Schröder,et al.  Schrödinger's smoke , 2016, ACM Trans. Graph..

[6]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH Asia '08.

[7]  Yiying Tong,et al.  Model-reduced variational fluid simulation , 2015, ACM Trans. Graph..

[8]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[9]  Theodore Kim,et al.  Subspace fluid re-simulation , 2013, ACM Trans. Graph..

[10]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[11]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[12]  Robert Bridson,et al.  Restoring the missing vorticity in advection-projection fluid solvers , 2015, ACM Trans. Graph..

[13]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, ACM Trans. Graph..

[14]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[15]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[16]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[17]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[18]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, SIGGRAPH 2010.

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Eugene Fiume,et al.  Fluid simulation using Laplacian eigenfunctions , 2012, TOGS.

[21]  Sheehan Olver,et al.  Tensor calculus in polar coordinates using Jacobi polynomials , 2015, J. Comput. Phys..

[22]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[23]  Rüdiger Westermann,et al.  Large-Scale Liquid Simulation on Adaptive Hexahedral Grids , 2014, IEEE Transactions on Visualization and Computer Graphics.

[24]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[25]  Adrien Treuille,et al.  Non-polynomial Galerkin projection on deforming meshes , 2013, ACM Trans. Graph..

[26]  Jos Starn A Simple Fluid Solver Based on the FFT , 2001, J. Graphics, GPU, & Game Tools.

[27]  Nathaniel J. Fisch,et al.  Sudden Viscous Dissipation of Compressing Turbulence. , 2015, Physical review letters.

[28]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[29]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[30]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[31]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[32]  Theodore Kim,et al.  Compressing fluid subspaces , 2016, Symposium on Computer Animation.

[33]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[34]  Robert Bridson,et al.  Evolving sub-grid turbulence for smoke animation , 2008, SCA '08.

[35]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[36]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[37]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[38]  Ronald D. Henderson Scalable fluid simulation in linear time on shared memory multiprocessors , 2012, DigiPro '12.

[39]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[40]  S. Orszag Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.

[41]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[42]  Edgar Velázquez-Armendáriz,et al.  Tensor Clustering for Rendering Many‐Light Animations , 2008 .

[43]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[44]  Hyeong-Seok Ko,et al.  Detail-preserving fully-Eulerian interface tracking framework , 2010, ACM Trans. Graph..

[45]  Mohit Gupta,et al.  Legendre fluids: a unified framework for analytic reduced space modeling and rendering of participating media , 2007, SCA '07.

[46]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[47]  Lauren Reiter,et al.  Zephyr , 2013 .

[48]  V. Rich Personal communication , 1989, Nature.

[49]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[50]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[51]  Erik Reinhard,et al.  Real-time fluid simulation using discrete sine/cosine transforms , 2009, I3D '09.