Canonical Characters on Quasi-Symmetric Functions and Bivariate Catalan Numbers
暂无分享,去创建一个
[1] Abdus Salam,et al. Random Walks and Catalan Factorization , 2007 .
[2] Frank Sottile,et al. Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.
[3] Kathryn L. Nyman,et al. The peak algebra and the descent algebras of types B and D , 2003, math/0302278.
[4] Frank Sottile,et al. Structure of The Malvenuto-Reutenauer Hopf Algebra of Permutations (Extended Abstract) , 2002, math/0203282.
[5] K. Penson,et al. Integral Representations of Catalan and Related Numbers , 2001 .
[6] T. Mansour,et al. Involutions avoiding the class of permutations in Sk with prefix 12 , 2007 .
[7] Michael E. Hoffman. Quasi-Shuffle Products , 1999, math/9907173.
[8] J. Stembridge. Enriched p-partitions , 1997 .
[9] J. Thibon,et al. Quantum quasi-symmetric functions and Hecke algebras , 1996 .
[10] R. Ehrenborg. On Posets and Hopf Algebras , 1996 .
[11] Universitde Marne-la-Vall. Quantum quasi-symmetric functions and Hecke algebras , 1996 .
[12] Ira M. Gessel,et al. Super Ballot Numbers , 1992, J. Symb. Comput..
[13] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[14] R. Stanley. Ordered Structures And Partitions , 1972 .
[15] E. Catalan. Sur quelques questions relatives aux fonctions elliptiques , 2022 .