Exploring the Placement and Design of Word-Scale Visualizations

We present an exploration and a design space that characterize the usage and placement of word-scale visualizations within text documents. Word-scale visualizations are a more general version of sparklines-small, word-sized data graphics that allow meta-information to be visually presented in-line with document text. In accordance with Edward Tufte's definition, sparklines are traditionally placed directly before or after words in the text. We describe alternative placements that permit a wider range of word-scale graphics and more flexible integration with text layouts. These alternative placements include positioning visualizations between lines, within additional vertical and horizontal space in the document, and as interactive overlays on top of the text. Each strategy changes the dimensions of the space available to display the visualizations, as well as the degree to which the text must be adjusted or reflowed to accommodate them. We provide an illustrated design space of placement options for word-scale visualizations and identify six important variables that control the placement of the graphics and the level of disruption of the source text. We also contribute a quantitative analysis that highlights the effect of different placements on readability and text disruption. Finally, we use this analysis to propose guidelines to support the design and placement of word-scale visualizations.

[1]  Peter Pirolli,et al.  Information Foraging , 2009, Encyclopedia of Database Systems.

[2]  William S. Cleveland,et al.  The Shape Parameter of a Two-Variable Graph , 1988 .

[3]  T. Saito,et al.  Two-tone pseudo coloring: compact visualization for one-dimensional data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[4]  Heidrun Schumann,et al.  A Design Space of Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[6]  Jeffrey Heer,et al.  Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations , 2009, CHI.

[7]  Pearson Jennifer,et al.  Improving Annotations in Digital Documents , 2009 .

[8]  Rajeev Ramanath,et al.  Color Perception , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[9]  Takeo Igarashi,et al.  A negotiation architecture for fluid documents , 1998, UIST '98.

[10]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[11]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[12]  Mary C. Dyson,et al.  How physical text layout affects reading from screen , 2004, Behav. Inf. Technol..

[13]  Anne E. Trefethen,et al.  Rule‐based Visual Mappings – with a Case Study on Poetry Visualization , 2013, Comput. Graph. Forum.

[14]  Nicholas Chen,et al.  TextTearing: opening white space for digital ink annotation , 2013, UIST.

[15]  Charles Perin,et al.  SoccerStories: A Kick-off for Visual Soccer Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[16]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[17]  Jeffrey Heer,et al.  Multi-Scale Banking to 45 Degrees , 2006, IEEE Transactions on Visualization and Computer Graphics.

[18]  Petra Isenberg,et al.  Evaluation of alternative glyph designs for time series data in a small multiple setting , 2013, CHI.

[19]  E. Tufte Beautiful Evidence , 2006 .

[20]  Pat Hanrahan,et al.  An Empirical Model of Slope Ratio Comparisons , 2012, IEEE Transactions on Visualization and Computer Graphics.

[21]  Dieter Schmalstieg,et al.  Context-Preserving Visual Links , 2011, IEEE Transactions on Visualization and Computer Graphics.

[22]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[23]  Mikkel Rønne Jakobsen,et al.  Transient visualizations , 2007, OZCHI '07.

[24]  Ulrik Brandes,et al.  Gestaltlines , 2013, Comput. Graph. Forum.

[25]  Jean-Daniel Fekete,et al.  Excentric Labeling: Dynamic Neighborhood Labeling for Data Visualization , 2003 .

[26]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[27]  Michael D. Ward,et al.  The Separation Plot: A New Visual Method for Evaluating the Fit of Binary Models , 2011 .

[28]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[29]  M. Sheelagh T. Carpendale,et al.  SparkClouds: Visualizing Trends in Tag Clouds , 2010, IEEE Transactions on Visualization and Computer Graphics.

[30]  Jock D. Mackinlay,et al.  The impact of fluid documents on reading and browsing: an observational study , 2000, CHI.

[31]  Maureen C. Stone,et al.  In Color Perception, Size Matters , 2012, IEEE Computer Graphics and Applications.

[32]  Maurizio Rigamonti,et al.  Extended Excentric Labeling , 2009, Comput. Graph. Forum.

[33]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[34]  Jeffrey Heer,et al.  Scented Widgets: Improving Navigation Cues with Embedded Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.