Coupling Schemes in Terahertz Planar Metamaterials

We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive (LC) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of the LC resonance. We observe the LC resonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-order resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes.

[1]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[2]  Lin Kang,et al.  Low loss and magnetic field-tunable superconducting terahertz metamaterial. , 2010, Optics express.

[3]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[4]  Zhen Tian,et al.  Terahertz superconducting plasmonic hole array. , 2010, Optics letters.

[5]  A. Bitzer,et al.  Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study. , 2011, Optics express.

[6]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[7]  Abul K. Azad,et al.  Dynamically reconfigurable terahertz metamaterial through photo- doped semiconductor , 2011 .

[8]  Kurt Busch,et al.  Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation. , 2010, Optics express.

[9]  Abul K. Azad,et al.  An active hybrid plasmonic metamaterial , 2012 .

[10]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[11]  Weili Zhang,et al.  Optically thin terahertz metamaterials. , 2008, Optics express.

[12]  Carsten Rockstuhl,et al.  The impact of nearest neighbor interaction on the resonances in terahertz metamaterials , 2009 .

[13]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[14]  D. Abbott,et al.  Metamaterials in the Terahertz Regime , 2009, IEEE Photonics Journal.

[15]  Weili Zhang,et al.  Effect of metal permittivity on resonant properties of terahertz metamaterials. , 2008, Optics letters.

[16]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[17]  Ranjan Singh,et al.  Tuning the resonance in high-temperature superconducting terahertz metamaterials. , 2010, Physical review letters.

[18]  Carsten Rockstuhl,et al.  Strong influence of packing density in terahertz metamaterials , 2010 .

[19]  Q. Jia,et al.  Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials , 2011, 1111.3917.

[20]  Ewold Verhagen,et al.  Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. , 2009, Physical review letters.

[21]  Zhen Tian,et al.  Terahertz superconductor metamaterial , 2010 .

[22]  D. R. Chowdhury,et al.  Tailored resonator coupling for modifying the terahertz metamaterial response. , 2011, Optics express.

[23]  Sher-Yi Chiam,et al.  Controlling metamaterial resonances via dielectric and aspect ratio effects , 2010 .

[24]  Ranjan Singh,et al.  Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. , 2011, Optics letters.

[25]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[26]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[27]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[28]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[29]  Andreas Tünnermann,et al.  Effective properties of amorphous metamaterials , 2009 .

[30]  Zhen Tian,et al.  Random terahertz metamaterials , 2010 .

[31]  M. Kafesaki,et al.  Multi-gap individual and coupled split-ring resonator structures. , 2008, Optics express.

[32]  N. Zheludev,et al.  Highly tunable optical activity in planar achiral terahertz metamaterials. , 2010, Optics express.

[33]  D. R. Chowdhury,et al.  A broadband planar terahertz metamaterial with nested structure. , 2011, Optics express.

[34]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.

[35]  Carsten Rockstuhl,et al.  On the reinterpretation of resonances in split-ring-resonators at normal incidence. , 2006, Optics express.

[36]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[37]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[38]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[39]  D. R. Chowdhury,et al.  Observing metamaterial induced transparency in individual Fano resonators with broken symmetry , 2011 .

[40]  A. Taylor,et al.  Surface plasmons in terahertz metamaterials. , 2008, Optics express.

[41]  David J. Edwards,et al.  Coupling mechanisms for split ring resonators: Theory and experiment , 2007 .

[42]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[43]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[44]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[45]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[46]  T. Feurer,et al.  Lattice modes mediate radiative coupling in metamaterial arrays. , 2009, Optics express.

[47]  Nikolay I. Zheludev,et al.  Coherent and incoherent metamaterials and order-disorder transitions , 2008, 0809.2361.

[48]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[49]  Abul K. Azad,et al.  Manipulation of terahertz radiation using metamaterials , 2011 .

[50]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.