Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration.

[1]  M. Sandri Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome☆☆☆ , 2013, The international journal of biochemistry & cell biology.

[2]  S. Kimball,et al.  Regulation of muscle protein synthesis and the effects of catabolic states. , 2013, The international journal of biochemistry & cell biology.

[3]  M. Sandri,et al.  Cellular and molecular mechanisms of muscle atrophy , 2013, Disease Models & Mechanisms.

[4]  A. Gomes,et al.  Upregulation of proteasome activity in muscle RING finger 1‐null mice following denervation , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  S. Wesselborg,et al.  Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks , 2011, Molecular and Cellular Biology.

[6]  M. Uesugi,et al.  Translational repression stabilizes messenger RNA of autophagy‐related genes , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[7]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[8]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[9]  M. Sandri Autophagy in skeletal muscle , 2010, FEBS letters.

[10]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[11]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[12]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[13]  S. Tesseraud,et al.  Refeeding and insulin activate the AKT/p70S6 kinase pathway without affecting IRS1 tyrosine phosphorylation in chicken muscle. , 2008, Domestic animal endocrinology.

[14]  James M. Bogenberger,et al.  Retrovirology Open Access Human T Lymphotropic Virus Type 1 Protein Tax Reduces Histone Levels , 2022 .

[15]  A. Goldberg,et al.  FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. , 2007, Cell metabolism.

[16]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[17]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[18]  C. Denis,et al.  Regulation of ubiquitin–proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading , 2007, Pflügers Archiv - European Journal of Physiology.

[19]  A. Goldberg,et al.  Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. , 2006, Journal of the American Society of Nephrology : JASN.

[20]  S. Kimball,et al.  Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. , 2006, The Journal of nutrition.

[21]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[22]  A. Goldberg,et al.  IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. , 2004, American journal of physiology. Endocrinology and metabolism.

[23]  G. Yancopoulos,et al.  The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. , 2004, Molecular cell.

[24]  Marco Sandri,et al.  Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy , 2004, Cell.

[25]  A. Goldberg,et al.  Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  W. Winder,et al.  Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. , 2002, Journal of applied physiology.

[27]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[28]  A. Goldberg,et al.  Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D J Glass,et al.  Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy , 2001, Science.

[30]  D. Béchet,et al.  Leucine Limitation Induces Autophagy and Activation of Lysosome-dependent Proteolysis in C2C12 Myotubes through a Mammalian Target of Rapamycin-independent Signaling Pathway* , 2000, The Journal of Biological Chemistry.