Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data

We study the cubic defocusing nonlinear Schrödinger equation on R with supercritical initial data. For randomized initial data in H(R), we prove almost sure local wellposedness for 1 7 < s < 1 and almost sure scattering for 11 14 < s < 1. The randomization is based on a unit-scale decomposition in frequency space, a decomposition in the angular variable, and – for the almost sure scattering result – an additional unit-scale decomposition in physical space. We employ new probabilistic estimates for the linear Schrödinger flow with randomized data, where we effectively combine the advantages of the different decompositions.

[1]  Á. Bényi,et al.  On the Probabilistic Cauchy Theory of the Cubic Nonlinear Schrödinger Equation on Rd, d≥3 , 2014, 1405.7327.

[2]  Bjoern Bringmann Almost sure scattering for the energy critical nonlinear wave equation , 2018, American Journal of Mathematics.

[3]  Yu Deng Two-dimensional nonlinear Schrödinger equation with random radial data , 2012 .

[4]  T. Tao,et al.  Ill-posedness for nonlinear Schrodinger and wave equations , 2003, math/0311048.

[5]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations II: a global existence result , 2007, 0707.1448.

[6]  J. Brereton Almost sure local well-posedness for the supercritical quintic NLS , 2016, Tunisian Journal of Mathematics.

[7]  Tadahiro Oh,et al.  On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities , 2017, Discrete & Continuous Dynamical Systems - A.

[8]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[9]  Joachim Krieger,et al.  Randomization improved Strichartz estimates and global well-posedness for supercritical data , 2019, Annales de l'Institut Fourier.

[10]  G. Lebeau,et al.  Injections de Sobolev probabilistes et applications , 2011, 1111.7310.

[11]  D. Robert,et al.  Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator , 2013, 1309.0795.

[12]  Nicolas Camps,et al.  Scattering for the cubic Schr{\"o}dinger equation in 3D with randomized radial initial data , 2021, 2110.10752.

[13]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.

[14]  R. Balan,et al.  Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS , 2014 .

[15]  M. Visan Global Well-posedness and Scattering for the Defocusing Cubic nonlinear Schrödinger equation in Four Dimensions , 2012 .

[16]  Dana Mendelson,et al.  Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data , 2017, American Journal of Mathematics.

[17]  Oana Pocovnicu Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb{R}^d$, $d=4$ and $5$ , 2014, 1406.1782.

[18]  K. Nakanishi,et al.  Randomized final-data problem for systems of nonlinear Schrödinger equations and the Gross–Pitaevskii equation , 2018, Mathematical Research Letters.

[19]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[20]  Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on ^3 , 2015 .

[21]  Yifei Wu,et al.  Almost sure well-posedness and scattering of the 3D cubic nonlinear Schr\"odinger equation , 2021 .

[22]  M. Visan,et al.  Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R 1+4 , 2007 .

[23]  'Arp'ad B'enyi,et al.  Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³ , 2017, Transactions of the American Mathematical Society, Series B.

[24]  Dana Mendelson,et al.  Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation , 2018, Advances in Mathematics.

[25]  Bjoern Bringmann Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimensions , 2018, 1804.09268.

[26]  Martin Spitz,et al.  Randomized final-state problem for the Zakharov system in dimension three , 2020, Communications in Partial Differential Equations.

[27]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[28]  Dana Mendelson,et al.  Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on ℝ3 , 2014 .

[29]  R. Killip,et al.  Almost sure scattering for the energy-critical NLS with radial data below , 2017, Communications in Partial Differential Equations.

[30]  A. Suzzoni Large Data Low Regularity Scattering Results for the Wave Equation on the Euclidean Space , 2010, 1101.4841.

[31]  Jason Murphy Random data final-state problem for the mass-subcritical NLS in $L^2$ , 2017, Proceedings of the American Mathematical Society.

[32]  Zihua Guo Sharp spherically averaged Strichartz estimates for the Schrödinger equation , 2014, 1406.2525.

[33]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[34]  K. Nakanishi,et al.  Generalized Strichartz Estimates and Scattering for 3D Zakharov System , 2013, 1305.2990.